Publications by authors named "David B Flint"

Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.

View Article and Find Full Text PDF

To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE).We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g.

View Article and Find Full Text PDF

Ataxia telangiectasia and Rad3-related protein (ATR) is a key DNA damage response protein that facilitates DNA damage repair and regulates cell cycle progression. As such, ATR is an important component of the cellular response to radiation, particularly in cancer cells, which show altered DNA damage response and aberrant cell cycle checkpoints. Therefore, ATR's pharmacological inhibition could be an effective radiosensitization strategy to improve radiotherapy.

View Article and Find Full Text PDF

Small molecule inhibitors are currently in preclinical and clinical development for the treatment of selected cancers, particularly those with existing genetic alterations in DNA repair and DNA damage response (DDR) pathways. Keen interest has also been expressed in combining such agents with other targeted antitumor strategies such as radiotherapy. Radiotherapy exerts its cytotoxic effects primarily through DNA damage-induced cell death; therefore, inhibiting DNA repair and the DDR should lead to additive and/or synergistic radiosensitizing effects.

View Article and Find Full Text PDF

Background: Proton relative biological effectiveness (RBE) is known to depend on physical factors of the proton beam, such as its linear energy transfer (LET), as well as on cell-line specific biological factors, such as their ability to repair DNA damage. However, in a clinical setting, proton RBE is still considered to have a fixed value of 1.1 despite the existence of several empirical models that can predict proton RBE based on how a cell's survival curve (linear-quadratic model [LQM]) parameters α and β vary with the LET of the proton beam.

View Article and Find Full Text PDF

Purpose: We assessed whether adding sodium borocaptate (BSH) or 4-borono-l-phenylalanine (BPA) to cells irradiated with proton beams influenced the biological effectiveness of those beams against prostate cancer cells to investigate if the alpha particles generated through proton-boron nuclear reactions would be sufficient to enhance the biological effectiveness of the proton beams.

Methods: We measured clonogenic survival in DU145 cells treated with 80.4-ppm BSH or 86.

View Article and Find Full Text PDF

Purpose: To show that intrinsic radiosensitivity varies greatly for protons and carbon (C) ions in addition to photons, and that DNA repair capacity remains important in governing this variability.

Methods: We measured or obtained from the literature clonogenic survival data for a number of human cancer cell lines exposed to photons, protons (9.9 keV/μm), and C-ions (13.

View Article and Find Full Text PDF

Purpose: High energetic carbon (C-) ion beams undergo nuclear interactions with tissue, producing secondary nuclear fragments. Thus, at depth, C-ion beams are composed of a mixture of different particles with different linear energy transfer (LET) values. We developed a technique to enable isolation of DNA damage response (DDR) in mixed radiation fields using beam line microscopy coupled with fluorescence nuclear track detectors (FNTDs).

View Article and Find Full Text PDF

Purpose: This study seeks to identify biological factors that may yield a therapeutic advantage of proton therapy versus photon therapy. Specifically, we address the role of nonhomologous end-joining (NHEJ) and homologous recombination (HR) in the survival of cells in response to clinical photon and proton beams.

Methods And Materials: We irradiated HT1080, M059K (DNA-PKcs), and HCC1937 human cancer cell lines and their isogenic counterparts HT1080-shDNA-PKcs, HT1080-shRAD51, M059J (DNA-PKcs), and HCC1937-BRCA1 (BRCA1 complemented) to assess cell clonogenic survival and γ-H2AX radiation-induced foci.

View Article and Find Full Text PDF

Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies.

View Article and Find Full Text PDF