Publications by authors named "David B Cullinan"

Factor VIII (FVIII, other clotting factors are named similarly) is a glycoprotein that circulates in the plasma bound to von Willebrand factor. During the blood coagulation cascade, activated FVIII (FVIIIa) binds to FIXa and activates FX in the presence of calcium ions and phospholipid membranes. The C1 and C2 domains mediate membrane binding that is essential for activation of the FVIIIa-FIXa complex.

View Article and Find Full Text PDF

Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa-Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain.

View Article and Find Full Text PDF

Binding of factor VIII to membranes containing phosphatidyl-L-serine (Ptd-L-Ser) is mediated, in part, by a motif localized to the C2 domain. We evaluated a putative membrane-binding role of the C1 domain using an anti-C1 antibody fragment, KM33(scFv), and factor VIII mutants with an altered KM33 epitope. We prepared a dual mutant Lys2092/Phe2093 --> Ala/Ala (fVIII(YFP 2092/93)) and 2 single mutants Lys2092 --> Ala and Phe2093 --> Ala.

View Article and Find Full Text PDF

Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals.

View Article and Find Full Text PDF

An unidentified white powder collected as evidence in an intelligence investigation was characterized exclusively by nuclear magnetic resonance (NMR) analysis. A small fraction of the powder dissolved in D2O was subjected to a series of one- and two-dimensional techniques which were used to elucidate the molecular structure of the powder's major component and positively identify it as the scopolamine biotoxin. Quantitative one-dimensional experiments identified individual proton and carbon atom sites, and conventional 14N spectroscopy detected a single nitrogen atom site.

View Article and Find Full Text PDF

Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use.

View Article and Find Full Text PDF