Purpose: Bladder reconstruction performed by enterocystoplasty or with bioengineered substitutes is still associated with complications, which led us to develop an autologous vesical equivalent (VE). This model has already proven its structural conformity. The challenge is to reconstruct our model in a more physiological environment, with the use of a bioreactor that mimics the dynamic of bladder filling and emptying, to acquire physiological properties.
View Article and Find Full Text PDFThere is a clinical need for better blood vessel substitutes, as current surgical procedures are limited by the availability of suitable autologous vessels and suboptimal behavior of synthetic grafts in small caliber arterial graft (<5 mm) applications. The aim of the present study was to compare the mechanical properties of arterial and venous tissue-engineered vascular constructs produced by the self-assembly approach using cells extracted from either the artery or vein harvested from the same human umbilical cord. The production of a vascular construct comprised of a media and an adventitia (TEVMA) was achieved by rolling a continuous tissue sheet containing both smooth muscle cells and adventitial fibroblasts grown contiguously in the same tissue culture plate.
View Article and Find Full Text PDF