Oceans play a key role in the global mercury (Hg) cycle, but studies on Hg isotopes in seawater are rare due to the extremely low Hg concentration and the lack of a good preconcentration method. Here, we introduce a new coprecipitation method for separating and preconcentrating Hg from seawater for accurate isotope measurement. The coprecipitation was achieved by sequential addition of 0.
View Article and Find Full Text PDFRivers integrate natural and anthropogenic mercury (Hg), and are important vectors of terrestrial Hg to the oceans. Here, we report the total Hg concentration and Hg isotope compositions of dissolved load in the Pearl River, the second largest river in China, in order to understand the processes and sources affecting Hg systematics in large anthropogenically-impacted river water. The dissolved Hg showed a concentration varying from 0.
View Article and Find Full Text PDFRationale: Multiple sulfur isotope compositions are usually measured on relatively large samples (in the range of micromoles); however, sometimes only small amounts are available and thus it is necessary to analyze small (sub-micromole) samples. We report an improved method to measure multiple sulfur isotope compositions: δ(33) S, δ(34) S and δ(36) S values on the SF6 molecule (m/z 127, 128, 129, 131) for quantities down to 0.1 micromole, and δ(33) S and δ(34) S values for quantities down to 20 nanomoles.
View Article and Find Full Text PDF