Publications by authors named "David Alvarez-Cilleros"

Cocoa constitutes one of the richest sources of dietary flavonoids with demonstrated anti-diabetic potential. However, the metabolic impact of cocoa intake in a diabetic context remains unexplored. In this study, metabolomics tools have been used to investigate the potential metabolic changes induced by cocoa in type 2 diabetes (T2D).

View Article and Find Full Text PDF

Aging in mammals is characterized by failure of the homeostatic mechanisms that regulate energy balance. Several mechanisms have been proposed such as the presence of a low-grade chronic inflammation in different tissues, as well as leptin and insulin resistance, but the primary alteration is not fully elucidated. The gut microbiota has recently emerged as a key player in a variety of metabolic and neurological disorders.

View Article and Find Full Text PDF

Hyperglycaemia induces a vascular inflammatory process that is a critical event in cardiovascular disease in type 2 diabetes. Cocoa and its flavanols have been widely investigated for its antioxidant and anti-inflammatory properties, and several clinical and pre-clinical studies support their vascular benefits. However, the effects of cocoa flavanols on vascular inflammation in diabetes remains to be elucidated.

View Article and Find Full Text PDF

Chronic hyperglycaemia and inflammation are present in diabetes and both processes have been related to the pathogenesis of diabetic kidney disease. Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake, such as 2,3-dihydroxybenzoic acid (DHBA), 3,4-dihydroxyphenylacetic acid (DHPAA) and 3-hydroxyphenylpropionic acid (HPPA), have been suggested to exert beneficial effects in diabetes. This study was aimed at investigating whether the mentioned compounds could prevent inflammation in renal proximal tubular NRK-52E cells induced by high glucose and lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Cocoa supplementation improves glucose metabolism in Zucker diabetic fatty (ZDF) rats via multiple mechanisms. Furthermore, cocoa rich-diets modify the intestinal microbiota composition both in humans and rats in healthy conditions. Accordingly, we hypothesized that cocoa could interact with the gut microbiota (GM) in ZDF rats, contributing to their antidiabetic effects.

View Article and Find Full Text PDF

Oxidative stress may cause functional disorders of vascular endothelia which can lead to endothelial apoptosis and thus alter the function and structure of the vascular tissues. Plant antioxidants protect the endothelium against oxidative stress and then become an effective option to treat vascular diseases. Cocoa flavanols have been proven to protect against oxidative stress in cell culture and animal models.

View Article and Find Full Text PDF

Redox balance, autophagy and apoptosis are main processes involved in the development of diabetic nephropathy. Epidemiological and animal studies suggest that cocoa might reduce the risk of diabetic complications. However, the molecular mechanisms responsible for these potential preventive activities and whether cocoa exerts beneficial effects on dysregulated signalling pathways involved in cellular antioxidant defence, autophagy and apoptosis in the diabetic kidney remain largely unknown.

View Article and Find Full Text PDF

Scope: The aim of the present study is to investigate the potential protective effect of a cocoa-rich diet on functional and structural vascular alterations in diabetes and the mechanism involved.

Methods And Results: Male Zucker diabetic fatty (ZDF) rats are fed on a standard (ZDF-C) or cocoa-rich diet (ZDF-Co) from week 10 to 20 of life. Diabetic ZDF-C rats showed increased blood pressure and enhanced aortic stiffness, as demonstrated by the increased pulse pressure and the augmented aortic medial thickness with loss and disruption of elastic fibres.

View Article and Find Full Text PDF

Glucotoxicity (high levels of glucose) is a major factor in the pathogenesis of diabetic kidney disease. Cocoa has anti-diabetic effects by lowering glucose levels. However, whether cocoa exerts beneficial effects on the renal cortex glucose homeostasis and the molecular mechanisms responsible for this possible protective activity remain largely unknown.

View Article and Find Full Text PDF

Glucotoxicity (high levels of glucose) is a major cause in the pathogenesis of diabetes. Evidences indicate that (-)-epicatechin (EC) and colonic metabolites derived from flavonoid intake could possess antidiabetic effects, but the mechanisms for their preventive activities related to glucose homeostasis and insulin signalling in the kidney remain largely unknown. This work is aimed to investigate the effect of EC and main colonic phenolic acids derived from flavonoid intake, i.

View Article and Find Full Text PDF

Oxidative stress is involved in endothelial dysfunction, the key player in the development of vascular events. Flavanols, the major antioxidants in cocoa have been related to vascular protection and lower cardiovascular risk. However, the bioavailability of cocoa flavanols is very low and their bioactivity in vivo seems to be greatly mediated by the derived phenolic metabolites formed by intestinal microbiota.

View Article and Find Full Text PDF

Scope: (-)-Epicatechin (EC) and main colonic phenolic acids derived from flavonoid intake, such as 2,3-dihydroxybenzoic acid (DHBA), 3,4-dihydroxyphenylacetic acid (DHPAA), 3-hydroxyphenylpropionic acid (HPPA), and vanillic acid (VA), have been suggested to exert beneficial effects in diabetes, although the mechanism for their actions remains unknown. In this study, the modulation of glucose homeostasis and insulin signaling by the mentioned compounds on renal proximal tubular NRK-52E cells is investigated.

Methods And Results: Levels of the glucose transporters SGLT-2 and GLUT-2, as well as glucose uptake, glucose production, and key proteins of the insulin pathways, namely insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and PI3K/AKT pathway are analyzed.

View Article and Find Full Text PDF