Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA.
View Article and Find Full Text PDFUnlabelled: Tongue swabs represent a potential alternative to sputum as a sample type for detecting pulmonary tuberculosis (TB) using molecular diagnostic tests. The methods used to process tongue swabs for testing in the WHO-recommended Xpert MTB/RIF Ultra (Xpert Ultra) assay vary greatly. We aimed to identify the optimal method for processing diagnostic tongue swabs for subsequent testing by Xpert Ultra.
View Article and Find Full Text PDFUnlabelled: is a multidrug-resistant fungal pathogen with a propensity to colonize humans and persist on environmental surfaces. invasive fungal disease is being increasingly identified in acute and long-term care settings. We have developed a prototype cartridge-based surveillance assay (CaurisSurV cartridge; "research use only") that includes integrated sample processing and nucleic acid amplification to detect from surveillance skin swabs in the GeneXpert instrument and is designed for point-of-care use.
View Article and Find Full Text PDFBackground: Xpert MTB/RIF Ultra (Ultra) is an automated molecular test for the detection of Mycobacterium tuberculosis in sputum. We compared the sensitivity of Ultra to that of mycobacterial growth indicator tube (MGIT) liquid culture, considered the most sensitive assay in routine clinical use.
Methods: In this prospective, multicentre, cross-sectional diagnostic accuracy study, we used a non-inferiority design to assess whether the sensitivity of a single Ultra test was non-inferior to that of a single liquid culture for detection of M tuberculosis in sputum.
The continued emergence of vaccine-resistant SARS-CoV-2 variants of concern (VOC) requires specific identification of each VOC as it arises. Here, we report an expanded version of our previously described sloppy molecular beacon (SMB) melting temperature (Tm) signature-based assay for VOCs, now modified to include detection of Delta (B.1.
View Article and Find Full Text PDFBackground: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood.
Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy.
Background: The NOVA Tuberculosis Total Antibody Rapid Test is a commercially available lateral flow serological assay that is intended to be used as an aid in the diagnosis of tuberculosis. We conducted a study to estimate diagnostic accuracy of this assay for diagnosis of active pulmonary tuberculosis disease and for detection of infection.
Methods: This study used existing frozen plasma specimens that had been obtained previously from consenting HIV-negative adults in Cambodia, South Africa, and Vietnam whose tuberculosis status was rigorously characterized using sputum mycobacterial cultures and blood interferon gamma release assay.
Saliva has been a COVID-19 diagnostic specimen of interest due to its simple collection, scalability, and yield. Yet COVID-19 testing and estimates of the infectious period remain largely based on nasopharyngeal and nasal swabs. We sought to evaluate whether saliva testing captured prolonged presence of SARS-CoV-2 and potential infectiousness later in the disease course.
View Article and Find Full Text PDFH37Rv is the most widely used Mycobacterium tuberculosis strain, and its genome is globally used as the M. tuberculosis reference sequence. Here, we present Bact-Builder, a pipeline that uses consensus building to generate complete and accurate bacterial genome sequences and apply it to three independently cultured and sequenced H37Rv aliquots of a single laboratory stock.
View Article and Find Full Text PDFInitial responses to tuberculosis treatment are poor predictors of final therapeutic outcomes in drug-susceptible disease, suggesting that treatment success depends on features that are hidden within a small minority of the overall infecting Mycobacterium tuberculosis population. We developed a multitranswell robotic system to perform numerous parallel cultures of genetically barcoded M. tuberculosis exposed to steady-state concentrations of rifampicin to uncover these difficult-to-eliminate minority populations.
View Article and Find Full Text PDFBackground: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable.
View Article and Find Full Text PDFAn animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable.
View Article and Find Full Text PDFBackground: COVID-19 is a multi-system infection with emerging evidence-based antiviral and anti-inflammatory therapies to improve disease prognosis. However, a subset of patients with COVID-19 signs and symptoms have repeatedly negative RT-PCR tests, leading to treatment hesitancy. We used comparative serology early in the COVID-19 pandemic when background seroprevalence was low to estimate the likelihood of COVID-19 infection among RT-PCR negative patients with clinical signs and/or symptoms compatible with COVID-19.
View Article and Find Full Text PDFNon-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR). The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.
View Article and Find Full Text PDFMycobacterium tuberculosis can adapt to changing environments by non-heritable mechanisms. Frame-shifting insertions and deletions (indels) may also participate in adaptation through gene disruption, which could be reversed by secondary introduction of a frame-restoring indel. We present ScarTrek, a program that scans genomic data for indels, including those that together disrupt and restore a gene's reading frame, producing "frame-shift scars" suggestive of reversible gene inactivation.
View Article and Find Full Text PDFThe increased transmission of SARS-CoV-2 variants of concern (VOC), which originated in the United Kingdom (B.1.1.
View Article and Find Full Text PDFBackground: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings.
Methods: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2.
Background: The increased transmission of SARS-CoV-2 variants of concern (VOC) which originated in the United Kingdom (B.1.1.
View Article and Find Full Text PDFSensitive, accessible, and biosafe sampling methods for COVID-19 reverse-transcriptase polymerase chain reaction (RT-PCR) assays are needed for frequent and widespread testing. We systematically evaluated diagnostic yield across different sample collection and transport workflows, including the incorporation of a viral inactivation buffer. We prospectively collected nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients.
View Article and Find Full Text PDFBackground: Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings.
Methods: We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream RT-PCR testing to detect SARS-CoV-2.
We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in and analyzes melting temperatures ( s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules.
View Article and Find Full Text PDFLittle is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has caused a severe shortage of personal protective equipment (PPE), especially N95 respirators. Efficient, effective and economically feasible methods for large-scale PPE decontamination are urgently needed.
Aims: (1) to develop protocols for effectively decontaminating PPE using vaporized hydrogen peroxide (VHP); (2) to develop novel approaches that decrease set up and take down time while also increasing decontamination capacity (3) to test decontamination efficiency for N95 respirators heavily contaminated by makeup or moisturizers.
Background: COVID-19 has stretched the ability of many institutions to supply needed personal protective equipment, especially N95 respirators. N95 decontamination and reuse programs provide one potential solution to this problem. Unfortunately, a comprehensive evaluation of the effects of decontamination on the integrity of various N95 models using a quantitative fit test (QTFT) approach is lacking.
View Article and Find Full Text PDF