The oxidation of transition metal surfaces is a process that takes place readily at ambient conditions and that, depending on the specific catalytic reaction at hand, can either boost or hamper activity and selectivity. Cu catalysts are no exception in this respect since they exhibit different oxidation states for which contradicting activities have been reported, as, for example, in the catalytic oxidation of CO. Here, we investigate the impact of low-coordination sites on nanofabricated Cu nanoparticles with engineered grain boundaries on the oxidation of the Cu surface under CO oxidation reaction conditions.
View Article and Find Full Text PDFLabel-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel.
View Article and Find Full Text PDFInvestigating a catalyst under relevant application conditions is experimentally challenging and parameters like reaction conditions in terms of temperature, pressure, and reactant mixing ratios, as well as catalyst design, may significantly impact the obtained experimental results. For Pt catalysts widely used for the oxidation of carbon monoxide, there is keen debate on the oxidation state of the surface at high temperatures and at/above atmospheric pressure, as well as on the most active surface state under these conditions. Here, we employ a nanoreactor in combination with single-particle plasmonic nanospectroscopy to investigate individual Pt catalyst nanoparticles localized inside a nanofluidic model pore during carbon monoxide oxidation at 2 bar in the 450-550 K temperature range.
View Article and Find Full Text PDFIn catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst.
View Article and Find Full Text PDFNanoconfinement in porous catalysts may induce reactant concentration gradients inside the pores due to local conversion. This leads to inefficient active material use since parts of the catalyst may be trapped in an inactive state. Experimentally, these effects remain unstudied due to material complexity and required high spatial resolution.
View Article and Find Full Text PDFThe highly localized sensitivity of metallic nanoparticles sustaining localized surface plasmon resonance (LSPR) enables detection of minute events occurring close to the particle surface and forms the basis for nanoplasmonic sensing. To date, nanoplasmonic sensors typically consist of two-dimensional (2D) nanoparticle arrays and can therefore only probe processes that occur within the array plane, leaving unaddressed the potential of sensing in three dimensions (3D). Here, we present a plasmonic metasurface comprising arrays of stacked Ag nanodisks separated by a thick SiO dielectric layer, which, through rational design, exhibit two distinct and spectrally separated LSPR sensing peaks and corresponding spatially separated sensing locations in the axial direction.
View Article and Find Full Text PDFCopper nanostructures are ubiquitous in microelectronics and heterogeneous catalysis and their oxidation is a topic of high current interest and broad relevance. It relates to important questions, such as catalyst active phase, activity and selectivity, as well as fatal failure of microelectronic devices. Despite the obvious importance of understanding the mechanism of Cu nanostructure oxidation, numerous open questions remain, including under what conditions homogeneous oxide layer growth occurs and when the nanoscale Kirkendall void forms.
View Article and Find Full Text PDFThe ongoing quest to develop single-particle methods for the in situ study of heterogeneous catalysts is driven by the fact that heterogeneity in terms of size, shape, grain structure, and composition is a general feature among nanoparticles in an ensemble. This heterogeneity hampers the generation of a deeper understanding for how these parameters affect catalytic properties. Here we present a solution that in a single benchtop experimental setup combines single-particle plasmonic nanospectroscopy with mass spectrometry for gas phase catalysis under reaction conditions at high temperature.
View Article and Find Full Text PDFThe ability to study oxidation, reduction, and other chemical transformations of nanoparticles in real time and under realistic conditions is a nontrivial task due to their small dimensions and the often challenging environment in terms of temperature and pressure. For scrutinizing oxidation of metal nanoparticles, visible light optical spectroscopy based on the plasmonic properties of the metal has been established as a suitable method. However, directly relying on the plasmonic resonance of metal nanoparticles as a built-in probe to track oxidation has a number of drawbacks, including the loss of optical contrast in the late oxidation stages.
View Article and Find Full Text PDFNanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication.
View Article and Find Full Text PDF