Publications by authors named "David Abookasis"

Skin cancer, an anomalous development of skin cells in the epidermis, is among the most common types of cancer worldwide. Because of its clinical importance and to improve early diagnosis and patient management, there is an urgent need to develop noninvasive, accurate medical diagnostic tools. To this aim, light reflectance spectroscopy over the visible and near-infrared spectral range (400-1000 nm) based on a single-fiber six-around-one optical probe was applied to extract nine features used for diagnostics.

View Article and Find Full Text PDF

Polyp segmentation is an important task in early identification of colon polyps for prevention of colorectal cancer. Numerous methods of machine learning have been utilized in an attempt to solve this task with varying levels of success. A successful polyp segmentation method which is both accurate and fast could make a huge impact on colonoscopy exams, aiding in real-time detection, as well as enabling faster and cheaper offline analysis.

View Article and Find Full Text PDF

Background: Conventional calibration of the gamma camera consists of the calculation of calibration factors (CFs) (ratio of counts/cc and true concentration activity) as the function of the volume of interest (VOI). However, such method shows inconsistent results when the background activity varies. The aim of the present study was to propose a new calibration method by considering the sphere-to-background counts/voxel ratio (SBVR) in addition to the VOI for CFs calculation.

View Article and Find Full Text PDF

In this work, diffuse near-infrared light reflectance spectroscopy based on a single optical probe, contains central single collection fiber surrounded by a circular array of illumination fibers, was used to quantify cerebral tissue properties in ApoE knockout mice following Sarcopoterium spinosum treatment. Sarcopoterium spinosum, also known as Thorny burnet, is a Mediterranean plant widely used as a traditional therapy for the treatment of a variety of pathologies, primarily type 2 diabetes mellitus (T2D). While it's efficacy in the treatment of T2D, and of other components of metabolic syndrome, have already been validated by us, the aim of this study was to investigate the effects of Sarcopoterium spinosum extract (SSE) on dyslipidemia and vascular functions.

View Article and Find Full Text PDF

Light reflectance spectroscopy (LRS) is a multispectral technique, sensitive to the absorption and scattering properties of biological molecules in tissues. It is used as a noninvasive tool to extract quantitative physiological information from human tissues and organs. A near-infrared LRS based on a single optical probe was used to monitor changes in optical and hemodynamic parameters in a mouse model of autism.

View Article and Find Full Text PDF

In this report, an integrated optical platform based on spatial illumination together with laser speckle contrast technique was utilized to measure multiple parameters in live tissue including absorption, scattering, saturation, composition, metabolism, and blood flow. Measurements in three models of tissue injury including drug toxicity, artery occlusion, and acute hyperglycemia were used to test the efficacy of this system. With this hybrid apparatus, a series of structured light patterns at low and high spatial frequencies are projected onto the tissue surface and diffuse reflected light is captured by a CCD camera.

View Article and Find Full Text PDF

In this study, we use dual-wavelength optical imaging-based laser speckle technique to assess cerebral blood flow and metabolic parameters in a mouse model of acute hyperglycemia (high blood glucose). The effect of acute glucose levels on physiological processes has been extensively described in multiple organ systems such as retina, kidney, and others. We postulated that hyperglycemia also alters brain function, which in turn can be monitored optically using dual-wavelength laser speckle imaging (DW-LSI) platform.

View Article and Find Full Text PDF

A practical algorithm for estimating the wavelength-dependent refractive index (RI) of a turbid sample in the spatial frequency domain with the aid of Kramers-Kronig (KK) relations is presented. In it, phase-shifted sinusoidal patterns (structured illumination) are serially projected at a high spatial frequency onto the sample surface (mouse scalp) at different near-infrared wavelengths while a camera mounted normally to the sample surface captures the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial absorption maps by logarithmic function, and once the absorption coefficient information is obtained, the imaginary part (k) of the complex RI (CRI), based on Maxell's equations, can be calculated.

View Article and Find Full Text PDF

Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption.

View Article and Find Full Text PDF

Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain.

View Article and Find Full Text PDF

In this study, we made use of dual-wavelength laser speckle imaging (DW-LSI) to assess cerebral blood flow (CBF) in the BTBR-genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW-LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO ), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function.

View Article and Find Full Text PDF

The application of optical techniques as tools for biomedical research has generated substantial interest for the ability of such methodologies to simultaneously measure biochemical and morphological parameters of tissue. Ongoing optimization of optical techniques may introduce such tools as alternative or complementary to conventional methodologies. The common approach shared by current optical techniques lies in the independent acquisition of tissue’s optical properties (i.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) is a clear and colorless biological fluid which circulates within brain ventricles (cavities), the spinal cord's central canal, the space between the brain and the spinal cord, as well as their protective coverings, the meninges. Cerebrospinal fluid contains different constituents, such as albumin and lactate, whose levels are used clinically as biomarkers of neurodegenerative disorders. In current clinical practice, analysis of CSF content for the diagnosis of central nervous system disorders requires an invasive procedure known as lumbar puncture or spinal tap.

View Article and Find Full Text PDF

Optical techniques have gained substantial interest over the past four decades for biomedical imaging due to their unique advantages, which may suggest their use as alternatives to conventional methodologies. Several optical techniques have been successfully adapted to clinical practice and biomedical research to monitor tissue structure and function in both humans and animal models. This paper reviews the analysis of the optical properties of brain tissue in the wavelength range between 500 and 1000 nm by three different diffuse optical reflectance methods: spatially modulated illumination, orthogonal diffuse light spectroscopy, and dual-wavelength laser speckle imaging, to monitor changes in brain tissue morphology, chromophore content, and metabolism following head injury.

View Article and Find Full Text PDF

Abstract. The measurement of dynamic changes in brain hemodynamic and metabolism events following head trauma could be valuable for injury prognosis and for planning of optimal medical treatment. Specifically, variations in blood flow and oxygenation levels serve as important biomarkers of numerous pathophysiological processes.

View Article and Find Full Text PDF

The time required for the arrival of an ambulance crew and administration of first aid is critical to clinical outcome, particularly in the case of head injury victims requiring neuroprotective drugs following a car accident, falls, and assaults. Short response times of the medical team, together with proper treatment, can limit injury severity and even save a life before transportation to the nearest medical center. We present a comparative evaluation of five different neuroprotective drugs frequently used in intensive care and operating units in the early phase following traumatic brain injury (TBI): hypertonic saline (HTS), mannitol, morphine, melatonin, and minocycline.

View Article and Find Full Text PDF

In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min.

View Article and Find Full Text PDF

Use of near-infrared (NIR) structured illumination technique has recently received great interest in biomedical research and clinical studies because of its ability to perform wide-field imaging and quantitatively map changes in tissue hemodynamic properties and morphological features in a noncontact and scan-free fashion. We report on the feasibility of using the same to quantitatively monitor and map changes in brain optical properties and physiological parameters pre- and post-closed head injury in a mouse model. Five anesthetized male mice underwent head injury by weight-drop model using a ~50-g cylindrical metal object falling from a height of 90 cm onto the intact scalp.

View Article and Find Full Text PDF

The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults.

View Article and Find Full Text PDF

Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6).

View Article and Find Full Text PDF

Saccharide interferences such as Dextran, Galactose, etc. have a great potential to interfere with near infrared (NIR) glucose analysis since they have a similar spectroscopic fingerprint and are present physiologically at large relative concentrations. These can lead to grossly inappropriate interpretation of patient glucose levels and resultant treatment in critical care and hospital settings.

View Article and Find Full Text PDF

We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion.

View Article and Find Full Text PDF

We describe various techniques to synthesize three types of computer-generated hologram (CGH): the Fresnel-Fourier CGH, the Fresnel CGH, and the image CGH. These holograms are synthesized by fusing multiple perspective views of a computer-generated scene. An initial hologram is generated in the computer as a Fourier hologram.

View Article and Find Full Text PDF

An optical security system based on a correlation between two separate binary computer-generated holograms has been developed and experimentally tested. The two holograms are designed using two different iterative algorithms: the projection- onto constrained sets algorithm and the direct binary search (DBS) algorithm. By placing the ready-to-use holograms on a modified joint transform correlator input plane, an output image is constructed as a result of a spatial correlation between the two functions coded by the holograms.

View Article and Find Full Text PDF