Publications by authors named "David Aasen"

Motivated by recent experiments on the Kitaev honeycomb magnet α-RuCl_{3}, we introduce time-domain probes of the edge and quasiparticle content of non-Abelian spin liquids. Our scheme exploits ancillary quantum spins that communicate via time-dependent tunneling of energy into and out of the spin liquid's chiral Majorana edge state. We show that the ancillary-spin dynamics reveals the edge-state velocity and, in suitable geometries, detects individual non-Abelian anyons and emergent fermions via a time-domain counterpart of quantum-Hall anyon interferometry.

View Article and Find Full Text PDF

We show that particle detectors, such as two-level atoms, in noninertial motion (or in gravitational fields) could be used to build quantum gates for the processing of quantum information. Concretely, we show that through suitably chosen noninertial trajectories of the detectors the interaction Hamiltonian's time dependence can be modulated to yield arbitrary rotations in the Bloch sphere due to relativistic quantum effects.

View Article and Find Full Text PDF

To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators.

View Article and Find Full Text PDF