Publications by authors named "David A Sleper"

Resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi Syd. & Syd., has been identified in many soybean germplasm accessions and is conferred by either dominant or recessive genes that have been mapped to six independent loci (Rpp1 -Rpp6), but No U.

View Article and Find Full Text PDF

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar.

View Article and Find Full Text PDF

The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO(2) in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes.

View Article and Find Full Text PDF

Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for "Forrest" and "Williams 82" representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups.

View Article and Find Full Text PDF

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pest of soybean worldwide. Host plant resistance is an effective approach to control this pest. Plant introduction PI 567516C has been reported to be highly resistant to multiple-HG types of SCN.

View Article and Find Full Text PDF

Identification of functional markers (FMs) provides information about the genetic architecture underlying complex traits. An approach that combines the strengths of linkage and association mapping, referred to as nested association mapping (NAM), has been proposed to identify FMs in many plant species. The ability to identify and resolve FMs for complex traits depends upon a number of factors including frequency of FM alleles, magnitudes of their genetic effects, disequilibrium among functional and nonfunctional markers, statistical analysis methods, and mating design.

View Article and Find Full Text PDF

Background: Soybean (Glycine max [L] Merr.) seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex.

View Article and Find Full Text PDF

Numerous environmental factors influence isoflavone accumulation and have long hampered their genetic dissection. Temperature and water regimes are two of the most significant abiotic factors. However, while the effects of temperature have been widely studied, little is known about how water scarcity might affect isoflavone concentration in seeds.

View Article and Find Full Text PDF

A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.

View Article and Find Full Text PDF

PI 437654 is a unique accession because of its resistance to nearly all HG types (races) of soybean cyst nematode (Heterodera glycines Ichinohe; SCN). Objectives of this study were to confirm and refine the locations and gene action associated with SCN resistance previously discovered in PI 437654, and to identify new QTLs that may have been missed because of low coverage with genetic markers used in previous studies. Using 205 F(7:9) RILs and 276 SSR and AFLP molecular markers covering 2,406.

View Article and Find Full Text PDF

RNA interference (RNAi) has been recently employed as an effective experimental tool for both basic and applied biological studies in various organisms including plants. RNAi deploys small RNAs, mainly small interfering RNAs (siRNAs), to mediate the degradation of mRNA for regulating gene expression in plants. Here we report an efficient siRNA-mediated gene silencing of the omega-3 fatty acid desaturase (FAD3) gene family in a complex genome, the soybean (Glycine max).

View Article and Find Full Text PDF