The switch from vegetative to reproductive growth is marked by the termination of vegetative development and the adoption of floral identity by the shoot apical meristem (SAM). This process is called the floral transition. To elucidate the molecular determinants involved in this process, we performed genome-wide RNA expression profiling on maize (Zea mays) shoot apices at vegetative and early reproductive stages using massively parallel signature sequencing technology.
View Article and Find Full Text PDFDespite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR).
View Article and Find Full Text PDFPlants possess multiple genes encoding calcium sensor proteins that are members of the penta-EF-hand (PEF) family. Characterized PEF proteins such as ALG-2 (apoptosis-linked gene 2 product) and the calpain small subunit function in diverse cellular processes in a calcium-dependent manner by interacting with their target proteins at either their N-terminal extension or Ca2+ binding domains. We have identified a previously unreported class of PEF proteins in plants that are notable because they do not possess the hydrophobic amino acid rich N-terminal extension that is typical of these PEF proteins.
View Article and Find Full Text PDFThe pale aleurone color1 (pac1) locus, required for anthocyanin pigment in the aleurone and scutellum of the Zea mays (maize) seed, was cloned using Mutator transposon tagging. pac1 encodes a WD40 repeat protein closely related to anthocyanin regulatory proteins ANTHOCYANIN11 (AN11) (Petunia hybrida [petunia]) and TRANSPARENT TESTA GLABRA1 (TTG1) (Arabidopsis thaliana). Introduction of a 35S-Pac1 transgene into A.
View Article and Find Full Text PDFHistone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization.
View Article and Find Full Text PDFSequence similarity and profile searching tools were used to analyze the genome sequences of Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster for genes encoding three families of histone deacetylase (HDAC) proteins and three families of histone acetyltransferase (HAT) proteins. Plants, animals and fungi were found to have a single member of each of three subfamilies of the GNAT family of HATs, suggesting conservation of these functions. However, major differences were found with respect to sizes of gene families and multi-domain protein structures within other families of HATs and HDACs, indicating substantial evolutionary diversification.
View Article and Find Full Text PDFSeed-type vacuolar processing enzyme (VPE) activity is predicted to be essential for post-translational proteolysis of seed storage proteins in the protein storage vacuole of developing seeds. To test this hypothesis, we examined the protein profiles of developing and germinating seeds from Arabidopsis plants containing transposon-insertional knockout mutations in the genes that encode the two seed-type VPEs in Arabidopsis, betaVPE, which was identified previously, and deltaVPE, which is described here. The effects of these mutations were studied individually in single mutants and together in a double mutant.
View Article and Find Full Text PDF