Publications by authors named "David A Seekell"

As humanity continues to grow in size, questions related to human rights and the existing unequal distribution of food resources have taken on greater urgency. Is inequality in food access unjust or a regrettable consequence of the geographic distribution of biophysical resources? To what extent are there obligations to redress inequalities in access to food? We draw from a human rights perspective to identify obligations associated with access to food and develop a quantitative framework to evaluate the fulfillment of the human right to food. We discuss the capacity of socioeconomic development to reduce inequalities in per capita food availability with respect to the distribution of biophysical resources among countries.

View Article and Find Full Text PDF

Ensuring food security requires food production and distribution systems function throughout disruptions. Understanding the factors that contribute to the global food system's ability to respond and adapt to such disruptions (i.e.

View Article and Find Full Text PDF

Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions.

View Article and Find Full Text PDF

Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated.

View Article and Find Full Text PDF

A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions.

View Article and Find Full Text PDF

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called 'early warning signals', and successful empirical examples suggest a potential for practical applicability.

View Article and Find Full Text PDF
Article Synopsis
  • Regime shifts are significant changes in ecological processes that can have lasting impacts on human welfare, leading to issues like lake eutrophication and species extinction.* -
  • The study investigates conditional heteroscedasticity, a statistical phenomenon in time series data, as a tool to predict these regime shifts before they occur.* -
  • Findings show that significant conditional heteroscedasticity signals appear many time steps in advance of a regime shift, helping to differentiate between time series that will and won’t experience shifts.*
View Article and Find Full Text PDF

Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary.

View Article and Find Full Text PDF