The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history.
View Article and Find Full Text PDFLungs donated after cardiac death (DCD) are an underutilized resource for a dwindling donor lung transplant pool. Our study investigates the potential of a novel preservation solution, Somah, to better preserve statically stored DCD lungs, for an extended time period, when compared to low-potassium dextran solution (LPD). We hypothesize that Somah is a metabolically superior organ preservation solution for hypothermic statically stored porcine DCD lungs, possibly improving lung transplant outcomes.
View Article and Find Full Text PDFBackground: Cardiomyocytes rely heavily on mitochondrial energy production through oxidative phosphorylation. Chronic myocardial ischemia may cause mitochondrial dysfunction and affect ATP formation. Metabolic changes due to ischemia alters cardiac bioenergetics and hence myocardial function and overall bioenergetic state.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
June 2016
The traditional philosophy of ex vivo organ preservation has been to limit metabolic activity by storing organs in hypothermic, static conditions. This methodology cannot provide longevity of hearts for more than 4-6 h and is thereby insufficient to expand the number of available organs. Albeit at lower rate, the breakdown of ATP still occurs during hypothermia.
View Article and Find Full Text PDF