Publications by authors named "David A Rosenblueth"

Biochemical reaction networks are one of the most widely used formalisms in systems biology to describe the molecular mechanisms of high-level cell processes. However, modellers also reason with influence diagrams to represent the positive and negative influences between molecular species and may find an influence network useful in the process of building a reaction network. In this paper, we introduce a formalism of influence networks with forces, and equip it with a hierarchy of Boolean, Petri net, stochastic and differential semantics, similarly to reaction networks with rates.

View Article and Find Full Text PDF

Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph.

View Article and Find Full Text PDF

Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical organization forming pathways. Regulatory processes, however, form highly interlinked networks with non-hierarchical and non-unidirectional structures that contain statistically overrepresented circuits or motifs. Here, we analyze the behavior of pathways containing non-unidirectional (i.

View Article and Find Full Text PDF

Background: There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes.

View Article and Find Full Text PDF

Model checking is a well-established technique for automatically verifying complex systems. Recently, model checkers have appeared in computer tools for the analysis of biochemical (and gene regulatory) networks. We survey several such tools to assess the potential of model checking in computational biology.

View Article and Find Full Text PDF

Background: In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions.

View Article and Find Full Text PDF

The transcriptional network of Escherichia coli may well be the most complete experimentally characterized network of a single cell. A rule-based approach was built to assess the degree of consistency between whole-genome microarray experiments in different experimental conditions and the accumulated knowledge in the literature compiled in RegulonDB, a data base of transcriptional regulation and operon organization in E. coli.

View Article and Find Full Text PDF