Publications by authors named "David A Ray"

The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic and brain features linked to vocal learning in mammals by comparing data from the Egyptian fruit bat and 215 other placental mammals.* -
  • Researchers found that certain proteins evolve more slowly in vocal learners and identified a specific brain region responsible for vocal motor control in the Egyptian fruit bat.* -
  • Using machine learning, they uncovered 50 regulatory elements that are associated with vocal learning, suggesting that losses in these elements played a role in the evolution of vocal learning in mammals.*
View Article and Find Full Text PDF

High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families.

View Article and Find Full Text PDF
Article Synopsis
  • Zoonomia is the largest resource for studying mammalian genomes, analyzing 240 species to find genetic mutations that could impact fitness and disease risk.
  • Around 332 million bases in the human genome are highly conserved across species, indicating evolutionary significance, with 4552 of these being ultraconserved.
  • The research highlights that most constrained bases are outside protein-coding regions and not annotated, revealing potential insights for understanding unique traits in mammals and informing medical research.
View Article and Find Full Text PDF

We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree.

View Article and Find Full Text PDF

Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats.

View Article and Find Full Text PDF

Ixodes spp. and related ticks transmit prevalent infections, although knowledge of their biology and development of anti-tick measures have been hindered by the lack of a high-quality genome. In the present study, we present the assembly of a 2.

View Article and Find Full Text PDF

First discovered in maize, paramutation is a phenomenon in which one allele can trigger an epigenetic conversion of an alternate allele. This conversion causes a genetically heterozygous individual to transmit alleles that are functionally the same, in apparent violation of Mendelian segregation. Studies over the past several decades have revealed a strong connection between mechanisms of genome defense against transposable elements by small RNA and the phenomenon of paramutation.

View Article and Find Full Text PDF

Species with low effective population sizes are at greater risk of extinction because of reduced genetic diversity. Such species are more vulnerable to chance events that decrease population sizes (e.g.

View Article and Find Full Text PDF

Bat genomes are characterized by a diverse transposable element (TE) repertoire. In particular, the genomes of members of the family Vespertilionidae contain both active retrotransposons and active DNA transposons. Each TE type is characterized by a distinct pattern of accumulation over the past ~40 million years.

View Article and Find Full Text PDF

Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the levels of nucleotides and amino acids. The two approaches revealed contradictory phylogenetic signals, possibly due to a high level of ancestral incomplete lineage sorting.

View Article and Find Full Text PDF

Using presence/absence data from over 10,000 Ves SINE insertions, we reconstructed a phylogeny for 11 species. With nearly one-third of individual Ves gene trees discordant with the overall species tree, phylogenetic conflict appears to be rampant in this genus. From the observed conflict, we infer that ILS is likely a major contributor to the discordance.

View Article and Find Full Text PDF

Transposable elements (TEs) are genomic parasites that can propagate throughout host genomes. Mammalian genomes are typically dominated by LINE retrotransposons and their associated SINEs, and germline mobilization is a challenge to genome integrity. There are defenses against TE proliferation and the PIWI/piRNA defense is among the most well understood.

View Article and Find Full Text PDF

PIWIs are regulatory proteins that belong to the Argonaute family. Piwis are primarily expressed in gonads and protect the germline against the mobilization and propagation of transposable elements (TEs) through transcriptional gene silencing. Vertebrate genomes encode up to four Piwi genes: Piwil1, Piwil2, Piwil3 and Piwil4, but their duplication history is unresolved.

View Article and Find Full Text PDF

Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera.

View Article and Find Full Text PDF

Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians.

View Article and Find Full Text PDF

The song sparrow, , is one of the most widely distributed species of songbirds found in North America. It has been used in a wide range of behavioral and ecological studies. This species' pronounced morphological and behavioral diversity across populations makes it a favorable candidate in several areas of biomedical research.

View Article and Find Full Text PDF

The genus Peromyscus represents a rapidly diverged clade of Cricetid rodents that contains multiple cryptic species and has a propensity for morphologic conservation across its members. The unresolved relationships in previously proposed phylogenies reflect a suspected rapid adaptive radiation. To identify functional groups of genes that may be important in reproductive isolation in a reoccurring fashion across the Peromyscus phylogeny, liver and testis transcriptomes from four species (P.

View Article and Find Full Text PDF

Crocodilians are an economically, culturally, and biologically important group. To improve researchers' ability to study genome structure, evolution, and gene regulation in the clade, we generated a high-quality de novo genome assembly of the saltwater crocodile, Crocodylus porosus, from Illumina short read data from genomic libraries and in vitro proximity-ligation libraries. The assembled genome is 2,123.

View Article and Find Full Text PDF
Article Synopsis
  • Transposable elements (TEs) significantly influence genome evolution, but their repetitive nature makes them challenging to study and annotate.
  • Researchers examined TE content in 19 species of Heliconiine butterflies to understand their role in genomic diversification.
  • Findings revealed substantial variations in TE content across species, with some novel SINE lineages appearing and others going extinct, indicating TEs could shape future evolutionary pathways in these butterflies.
View Article and Find Full Text PDF

How reliable are the presence/absence insertion patterns of the supposedly homoplasy-free retrotransposons, which were randomly inserted in the quasi infinite genomic space? To systematically examine this question in an up-to-date, multigenome comparison, we screened millions of primate transposed Alu SINE elements for incidences of homoplasious precise insertions and deletions. In genome-wide analyses, we identified and manually verified nine cases of precise parallel Alu insertions of apparently identical elements at orthologous positions in two ape lineages and twelve incidences of precise deletions of previously established SINEs. Correspondingly, eight precise parallel insertions and no exact deletions were detected in a comparison of lemuriform primate and human insertions spanning the range of primate diversity.

View Article and Find Full Text PDF

Transposable elements (TEs) are genetic elements with the ability to mobilize and replicate themselves in a genome. Mammalian genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. As a result, TEs have had significant impacts on mammalian evolution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm6efqctg5dndien21nv00clngm36lc2u): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once