J Phys Condens Matter
March 2016
The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy.
View Article and Find Full Text PDFElectronic coupling and ground-state charge transfer at the C60 /ZnO hybrid interface is shown to localize carriers in the C60 phase. This effect, revealed by resonant X-ray photoemission, arises from interfacial hybridization between C60 and ZnO. Such localization at carrier-selective electrodes and interlayers may lead to severely reduced carrier harvesting efficiencies and increased recombination rates in organic electronic devices.
View Article and Find Full Text PDFDespite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core-hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of conductive ZnO films at a hybrid interface with an organic semiconductor. The adsorption of C60 on the ZnO surface strongly suppresses the ultrafast carrier delocalization and increases the charge carrier residence time from 400 attoseconds to nearly 30 fs.
View Article and Find Full Text PDFLayered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy.
View Article and Find Full Text PDF