Publications by authors named "David A Orwig"

Forest insect outbreaks cause large changes in ecosystem structure, composition, and function. Humans often respond to insect outbreaks by conducting salvage logging, which can amplify the immediate effects, but it is unclear whether logging will result in lasting differences in forest structure and dynamics when compared with forests affected only by insect outbreaks. We used 15 years of data from an experimental removal of Tsuga canadensis (L.

View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence.

View Article and Find Full Text PDF

Land-use history is the template upon which contemporary plant and tree populations establish and interact with one another and exerts a legacy on the structure and dynamics of species assemblages and ecosystems. We use the first census (2010-2014) of a 35-ha forest-dynamics plot at the Harvard Forest in central Massachusetts to describe the composition and structure of the woody plants in this plot, assess their spatial associations within and among the dominant species using univariate and bivariate spatial point-pattern analysis, and examine the interactions between land-use history and ecological processes. The plot includes 108,632 live stems ≥ 1 cm in diameter (2,215 individuals/ha) and 7,595 standing dead stems ≥ 5 cm in diameter.

View Article and Find Full Text PDF

Invasive forest insects have significant direct impacts on forest ecosystems and they are also generating new risks, uncertainties, and opportunities for forest landowners. The growing prevalence and inexorable spread of invasive insects across the United States, combined with the fact that the majority of the nation's forests are controlled by thousands of autonomous private landowners, raises an important question: To what extent will private landowners alter their harvest practices in response to insect invasions? Using a quasi-experimental design, we conducted a causal analysis to investigate the influence of the highly impactful emerald ash borer (EAB) on (1) annual probability of harvest; (2) intensity of harvest; and (3) diameter of harvested trees, for both ash and non-ash species on private land throughout the Midwest and mid-Atlantic regions of the United States. We found that EAB detection had a negative impact on annual harvest probability and a positive impact on harvest intensity, resulting in a net increase in harvested biomass.

View Article and Find Full Text PDF

Hemlock woolly adelgid (HWA; Adelges tsugae Annand (Hemiptera: Adelgidae)) is the cause of widespread mortality of Carolina and eastern hemlock (Tsuga caroliniana Engelmann and T. canadensis (L.) Carrière) throughout the eastern United States (U.

View Article and Find Full Text PDF

Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species.

View Article and Find Full Text PDF

Background And Aims: Terrestrial laser scanners (TLSs) have successfully captured various properties of individual trees and have potential to further increase the quality and efficiency of forest surveys. However, TLSs are limited to line of sight observations, and forests are complex structural environments that can occlude TLS beams and thereby cause incomplete TLS samples. We evaluate the prevalence and sources of occlusion that limit line of sight to forest stems for TLS scans, assess the impacts of TLS sample incompleteness, and evaluate sampling strategies and data analysis techniques aimed at improving sample quality and representativeness.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations influence tree diversity across different latitudes, using data from over 2.8 million trees.
  • AM trees were found to significantly contribute to reducing total tree diversity and turnover while enhancing nestedness at higher latitudes, contrasting with EcM trees that show less influence on compositional differences.
  • Environmental factors, especially temperature and precipitation, were more closely related to the beta-diversity patterns of AM trees, emphasizing the role of AM associations in maintaining global forest biodiversity.
View Article and Find Full Text PDF

Recent studies suggest that the mycorrhizal type associated with tree species is an important trait influencing ecological processes such as response to environmental conditions and conspecific negative density dependence (CNDD). However, we lack a general understanding of how tree mycorrhizal type influences CNDD strength and the resulting patterns of species abundance and richness at larger spatial scales. We assessed 305 species across 15 large, stem-mapped, temperate forest dynamics plots in Northeastern China and North America to explore the relationships between tree mycorrhizal type and CNDD, species abundance, and species richness at a regional scale.

View Article and Find Full Text PDF
Article Synopsis
  • Climate plays a crucial role in shaping biodiversity across different latitudes, but many studies overlook the distinction between direct and indirect effects of climate on biodiversity.
  • Research using data from 35 large forest plots shows that climate directly affects tree species richness, favoring warm and moist environments.
  • The findings suggest that climatic conditions not only directly limit species diversity but also promote greater species richness by supporting higher stem abundance and facilitating (co-)evolution in productive warm climates.*
View Article and Find Full Text PDF

The nonnative hemlock woolly adelgid is steadily killing eastern hemlock trees in many parts of eastern North America. We summarize impacts of the adelgid on these forest foundation species; review previous models and analyses of adelgid spread dynamics; and examine how previous forecasts of adelgid spread and ecosystem dynamics compare with current conditions. The adelgid has reset successional sequences, homogenized biological diversity at landscape scales, altered hydrological dynamics, and changed forest stands from carbon sinks into carbon sources.

View Article and Find Full Text PDF

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.

View Article and Find Full Text PDF

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.

View Article and Find Full Text PDF

A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species.

View Article and Find Full Text PDF

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance.

View Article and Find Full Text PDF

The development of old-growth forests in northeastern North America has largely been within the context of gap-scale disturbances given the rarity of stand-replacing disturbances. Using the 10-ha old-growth Harvard Tract and its associated 90-year history of measurements, including detailed surveys in 1989 and 2009, we document the long-term structural and biomass development of an old-growth Tsuga canadensis-Pinus strobus forest in southern New Hampshire, USA following a stand-replacing hurricane in 1938. Measurements of aboveground biomass pools were integrated with data from second- and old-growth T.

View Article and Find Full Text PDF

We review and synthesize information on invasions of nonnative forest insects and diseases in the United States, including their ecological and economic impacts, pathways of arrival, distribution within the United States, and policy options for reducing future invasions. Nonnative insects have accumulated in United States forests at a rate of ~2.5 per yr over the last 150 yr.

View Article and Find Full Text PDF

Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines of this conifer.

View Article and Find Full Text PDF

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change.

View Article and Find Full Text PDF

Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.

View Article and Find Full Text PDF

In the eastern United States, two invasive specialist insects share a native host plant, Eastern hemlock, Tsuga canadensis. In recent years, much research has focused on the impacts of the hemlock woolly adelgid (Adelges tsugae) because of the detrimental effects it has on hemlock growth and survival. In contrast, the invasive elongate hemlock scale (Fiorinia externa) is thought to have only minor impacts on hemlock.

View Article and Find Full Text PDF

Old-growth forests are valuable sources of ecological, conservation, and management information, yet these ecosystems have received little study in New England, due in large part to their regional scarcity. To increase our understanding of the structures and processes common in these rare forests, we studied the abundance of downed coarse woody debris (CWD) and snags and live-tree size-class distributions in 16 old-growth hemlock forests in western Massachusetts. Old-growth stands were compared with eight adjacent second-growth hemlock forests to gain a better understanding of the structural differences between these two classes of forests resulting from contrasting histories.

View Article and Find Full Text PDF

One unexpected consequence of natural disturbances in forested areas is that managers often initiate activities that may impose greater ecosystem impacts than the disturbances themselves. By salvage logging areas affected by windstorms or other impacts, by harvesting host trees in advance of insect infestation or disease, or by preemptively harvesting forests in an attempt to improve their resilience to future disturbances and stresses, managers initiate substantial changes in the ecosystem structure and function. Much of this activity is undertaken in the absence of information on the qualitative and quantitative differences between disturbance impacts and harvesting.

View Article and Find Full Text PDF