J R Stat Soc Ser C Appl Stat
April 2016
Quantitative fitness analysis (QFA) is a high throughput experimental and computational methodology for measuring the growth of microbial populations. QFA screens can be used to compare the health of cell populations with and without a mutation in a query gene to infer genetic interaction strengths genomewide, examining thousands of separate genotypes. We introduce Bayesian hierarchical models of population growth rates and genetic interactions that better reflect QFA experimental design than current approaches.
View Article and Find Full Text PDFThe transition density of a stochastic, logistic population growth model with multiplicative intrinsic noise is analytically intractable. Inferring model parameter values by fitting such stochastic differential equation (SDE) models to data therefore requires relatively slow numerical simulation. Where such simulation is prohibitively slow, an alternative is to use model approximations which do have an analytically tractable transition density, enabling fast inference.
View Article and Find Full Text PDFBackground: High-throughput screens comparing growth rates of arrays of distinct micro-organism cultures on solid agar are useful, rapid methods of quantifying genetic interactions. Growth rate is an informative phenotype which can be estimated by measuring cell densities at one or more times after inoculation. Precise estimates can be made by inoculating cultures onto agar and capturing cell density frequently by plate-scanning or photography, especially throughout the exponential growth phase, and summarising growth with a simple dynamic model (e.
View Article and Find Full Text PDF