Publications by authors named "David A Lewis"

Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol 1) is synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary type 1 cannabinoid receptor (CB1R); 3) binds to CB1R, which inhibits gamma-aminobutyric acid release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase.

View Article and Find Full Text PDF

Objective: Immune-related abnormalities are commonly reported in schizophrenia, including higher mRNA levels for the viral restriction factor interferon-induced transmembrane protein (IFITM) in the prefrontal cortex. The authors sought to clarify whether higher IFITM mRNA levels and other immune-related disturbances in the prefrontal cortex are the consequence of an ongoing molecular cascade contributing to immune activation or the reflection of a long-lasting maladaptive response to an in utero immune-related insult.

Method: Quantitative polymerase chain reaction was employed to measure mRNA levels for immune-related cytokines and transcriptional regulators, including those reported to regulate IFITM expression, in the prefrontal cortex from 62 schizophrenia and 62 healthy subjects and from adult mice exposed prenatally to maternal immune activation or in adulthood to the immune stimulant poly(I:C).

View Article and Find Full Text PDF

Objective: Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission.

View Article and Find Full Text PDF

Mycoplasma genitalium is an important cause of non-gonococcal urethritis, cervicitis, and related upper genital tract infections. The efficacy of doxycycline, used extensively to treat non-gonococcal urethritis in the past, is relatively poor for M. genitalium infection; azithromycin has been the preferred treatment for several years.

View Article and Find Full Text PDF

Importance: In schizophrenia, working memory deficits appear to reflect abnormalities in the generation of gamma oscillations in the dorsolateral prefrontal cortex. The generation of gamma oscillations requires the phasic excitation of inhibitory parvalbumin-containing interneurons. Thus, gamma oscillations depend, in part, on the number of synaptic glutamate receptors on parvalbumin interneurons.

View Article and Find Full Text PDF

Introduction: A progressive loss of circulating anti-human epidermal growth factor receptor-2/neu (HER2) CD4(+) T-helper type 1 (Th1) immune responses is observed in HER2(pos)-invasive breast cancer (IBC) patients relative to healthy controls. Pathologic complete response (pCR) following neoadjuvant trastuzumab and chemotherapy (T + C) is associated with decreased recurrence and improved prognosis. We examined differences in anti-HER2 Th1 responses between pCR and non-pCR patients to identify modifiable immune correlates to pathologic response following neoadjuvant T + C.

View Article and Find Full Text PDF

Background: Cognitive dysfunction in schizophrenia is associated with a lower density of dendritic spines on deep layer 3 pyramidal cells in the dorsolateral prefrontal cortex (DLPFC). These alterations appear to reflect dysregulation of the actin cytoskeleton required for spine formation and maintenance. Consistent with this idea, altered expression of genes in the cell division cycle 42 (CDC42)-CDC42 effector protein (CDC42EP) signaling pathway, a key organizer of the actin cytoskeleton, was previously reported in DLPFC gray matter from subjects with schizophrenia.

View Article and Find Full Text PDF

Expression of brain-derived neurotrophic factor (BDNF) and somatostatin (SST) mRNAs in the brain decreases progressively and robustly with age, and lower BDNF and SST expression in the brain has been observed in many brain disorders. BDNF is known to regulate SST expression; however, the mechanisms underlying decreased expression of both genes are not understood. DNA methylation (DNAm) is an attractive candidate mechanism.

View Article and Find Full Text PDF

Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency.

View Article and Find Full Text PDF

Non-overlapping groups of cortical γ-aminobutyric acid-releasing (GABAergic) neurons are identifiable by the presence of calbindin (CB), calretinin (CR), or parvalbumin (PV). Boutons from PV neuron subtypes are also distinguishable by differences in protein levels of the GABA-synthesizing enzymes GAD65 and GAD67. Multilabel fluorescence microscopy was used to determine if this diversity extends to boutons of CB and CR neurons in monkey prefrontal cortex.

View Article and Find Full Text PDF

Background: Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), numerous studies have revealed that the typically robust immunoreactivity (IR) of MAP2 is significantly reduced across several cortical regions. The relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in Sz, has not been explored in previous studies, and MAP2-IR loss has not been investigated in the primary auditory cortex (Brodmann area 41), a site of conserved pathology in Sz.

View Article and Find Full Text PDF

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) signaling is integral to a range of neural functions, including synaptic plasticity and exhibits activity-dependent regulation of expression. As altered BDNF signaling has been implicated in multiple psychiatric diseases, here we report a quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNAs encoding TrkB, total BDNF, and the four most abundant BDNF transcripts (I, IIc, IV, and VI) in postmortem tissue from matched tetrads of subjects with schizophrenia, bipolar disorder, or major depressive disorder (MDD) and healthy comparison subjects. In all three regions examined, dorsolateral prefrontal cortex (DLPFC), associative striatum and hippocampus, total BDNF mRNA levels did not differ in any disease state.

View Article and Find Full Text PDF

Background: Adolescents living in South Africa are at high risk for HIV and other sexually transmitted diseases (STDs). The present study sought to identify correlates of curable STD incidence among a cohort of adolescents in Eastern Cape Province, South Africa.

Methods: Data were collected in conjunction with an HIV/STD prevention intervention randomized controlled trial.

View Article and Find Full Text PDF

Background: Periodic etiological surveillance of sexually transmitted infection (STI) syndromes is required to validate treatment algorithms used to control STIs. However, such surveys have not been performed in Zimbabwe over the past decade.

Methods: A cross-sectional study design was used to determine the prevalence of the key STI etiological agents causing male urethral discharge (MUD).

View Article and Find Full Text PDF

In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC).

View Article and Find Full Text PDF

Alterations in inhibitory (GABA) neurons, including deficiencies in the GABA synthesizing enzyme GAD67, in the prefrontal cortex in schizophrenia are pronounced in the subpopulations of neurons that contain the calcium-binding protein parvalbumin or the neuropeptide somatostatin. The presence of similar illness-related deficits in the transcription factor Lhx6, which regulates prenatal development of parvalbumin and somatostatin neurons, suggests that cortical GABA neuron dysfunction may be related to disturbances in utero. Since the chemokine receptors CXCR4 and CXCR7 guide the migration of cortical parvalbumin and somatostatin neurons from their birthplace in the medial ganglionic eminence to their final destination in the neocortex, we sought to determine whether altered CXCR4 and/or CXCR7 mRNA levels were associated with disturbances in GABA-related markers in schizophrenia.

View Article and Find Full Text PDF

Background: Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia.

View Article and Find Full Text PDF

Background: Mycoplasma genitalium is a common sexually transmitted infection associated with human immunodeficiency virus (HIV) infection. Some studies suggest that M. genitalium may increase the risk of HIV acquisition.

View Article and Find Full Text PDF

Somatostatin (SST), a neuropeptide expressed in dendritic-targeting gamma-aminobutyric acid (GABA) neurons, is decreased across corticolimbic areas in major depressive disorder (MDD). SST-positive GABA neurons form heterogeneous subgroups with different laminar distributions and electrophysiological properties, so knowing the anatomical and cellular localization of reduced SST may provide insight into the nature of the pathology in MDD. In cohorts of MDD subjects with known reduction of SST in postmortem sgACC gray matter, we used in situ hybridization to quantify the laminar and cellular patterns of altered SST mRNA expression.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a debilitating and widespread illness that exerts significant personal and socioeconomic consequences. Recent genetic and brain-imaging studies suggest that bicaudal C homolog 1 gene (BICC1), which codes for an RNA-binding protein, may be associated with depression. Here, we show that BICC1 mRNA is upregulated in the dorsolateral prefrontal cortex and dentate gyrus of human postmortem MDD patients.

View Article and Find Full Text PDF