The extent and depth of burn injury may mandate temporary use of cadaver skin (allograft) to protect the wound and allow the formation of granulation tissue while split-thickness skin grafts (STSGs) are serially harvested from the same donor areas. However, allografts are not always available and have a high cost, hence the interest in identifying more economical, readily available products that serve the same function. This study evaluated intact fish skin graft (IFSG) as a temporary cover to prepare the wound bed for STSG application.
View Article and Find Full Text PDFIntroduction: If left untreated, burn injuries can deepen or progress in depth within the first 72 hours after injury as a result of increased wound inflammation, subsequently worsening healing outcomes. This can be especially detrimental to warfighters who are constrained to resource-limited environments with delayed evacuation times to higher roles of care and more effective treatment. Preventing this burn progression at the point of injury has the potential to improve healing outcomes but requires a field-deployable therapy and delivery system.
View Article and Find Full Text PDFThermal injuries are caused by exposure to a variety of sources, and split thickness skin grafts are the gold standard treatment for severe burns; however, they may be impossible when there is no donor skin available. Large total body surface area burns leave patients with limited donor site availability and create a need for treatments capable of achieving early and complete coverage that can also retain normal skin function. In this preclinical trial, two cellular and tissue based products (CTPs) are evaluated on twenty-four 5 × 5 deep partial thickness (DPT) burn wounds.
View Article and Find Full Text PDFNecrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent.
View Article and Find Full Text PDFStem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture.
View Article and Find Full Text PDFThe vectors of avian malaria (Haemosporida) are an understudied component of wildlife disease ecology. Most studies of avian malaria have focused on the intermediate bird hosts. This bias leaves a significant gap in our knowledge and understanding of the insect hosts.
View Article and Find Full Text PDFSpine metastases can be a debilitating and difficult therapeutic challenge for a significant number of cancer patients. Surgical management of spine metastases is often limited because of the complexity, risks, and recovery delays associated with open invasive surgical procedures. Conventional palliative external beam radiation therapy is the most common treatment modality.
View Article and Find Full Text PDFPurpose/objectives: Whole-brain radiation for brain metastases can result in cognitive side effects. Hippocampal-sparing techniques have been developed to decrease morbidity, but they carry the risk of underdosing lesions near the hippocampus due to the unavoidable dose gradient from the hippocampal surface to the prescription isodose surface. This study examines the impact of variable levels of hippocampal sparing on the underdosing of potential brain metastases.
View Article and Find Full Text PDFOBJECTIVE High-resolution double-dose gadolinium-enhanced Gamma Knife (GK) radiosurgery-planning MRI (GK MRI) on the day of GK treatment can detect additional brain metastases undiagnosed on the prior diagnostic MRI scan (dMRI), revealing increased intracranial disease burden on the day of radiosurgery, and potentially necessitating a reevaluation of appropriate management. The authors identified factors associated with detecting additional metastases on GK MRI and investigated the relationship between detection of additional metastases and postradiosurgery patient outcomes. METHODS The authors identified 326 patients who received GK radiosurgery at their institution from 2010 through 2013 and had a prior dMRI available for comparison of numbers of brain metastases.
View Article and Find Full Text PDFStereotactic radiosurgery (SRS) is an established non-invasive ablative therapy for brain metastases. Early clinical trials with SRS proved that tumor control rates are superior to whole brain radiotherapy (WBRT) alone. As a result, WBRT plus SRS was widely adopted for patients with a limited number of brain metastases ("limited number" customarily means 1-4).
View Article and Find Full Text PDFRecent studies have reported about the application of volumetric-modulated arc radiotherapy in the treatment of multiple brain metastases. One of the key concerns for these radiosurgical treatments lies in the integral dose within the normal brain tissue, as it has been shown to increase with increasing number of brain tumors treated. In this study, we investigate the potential to improve normal brain tissue sparing specific to volumetric-modulated arc radiotherapy by increasing the number of isocenters and arc beams.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
September 2015
Purpose: The purpose of this study was to evaluate workflow and patient outcomes related to frameless stereotactic radiation surgery (SRS) for brain metastases.
Methods And Materials: We reviewed all treatment demographics, clinical outcomes, and workflow timing, including time from magnetic resonance imaging (MRI), computed tomography (CT) simulation, insurance authorization, and consultation to the start of SRS for brain metastases.
Results: A total of 82 patients with 151 brain metastases treated with SRS were evaluated.
Stereotactic radiosurgery provides conformal treatment of intracranial lesions, but when multiple lesions are treated, cumulative dose to structures such as the hippocampi may be increased. We analyzed hippocampal dose for patients treated with radiosurgery for multiple brain metastases. We then investigated a means to minimize hippocampal dose.
View Article and Find Full Text PDFPurpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS).
Methods And Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter.
Glioblastoma multiforme (GBM) is the most common malignant brain tumor that affects approximately 17,000 patients annually. Clear survival advantages have been demonstrated with postoperative radiation therapy (RT) to doses of 5,000-6,000 cGy but dose-escalation attempts beyond 6,000 cGy have resulted in increased toxicity but no additional survival benefit. To improve local control and limit toxicity to normal brain tissue with these infiltrating tumors, novel imaging techniques are actively being explored to better define tumor extent and associated RT treatment fields.
View Article and Find Full Text PDFThe use of a Foley catheter to protect the small and large bowel from radiation injury during stereotactic radiosurgery to the spine has not previously been described in the surgical literature. Many spine tumors should be treated with stereotactic radiosurgery as opposed to external beam therapy, yet the proximity of visceral organs may preclude adequate target delivery of radiation. We describe the novel use of Foley catheters placed intraoperatively to displace the bowel during stereotactic radiosurgery, allowing for a full radiation dose to be safely delivered to the tumor.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
November 2014
Purpose: Normal brain tissue doses have been shown to be strongly apparatus dependent for multi-target stereotactic radiosurgery. In this study, we investigated whether inter-target dose interplay effects across contemporary radiosurgical treatment platforms are responsible for such an observation.
Methods: For the study, subsets ([Formula: see text] and 12) of a total of 12 targets were planned at six institutions.
Int J Radiat Oncol Biol Phys
May 2014
Purpose: To investigate how millimeter-level margins beyond the gross tumor volume (GTV) impact peripheral normal brain tissue sparing for Gamma Knife radiosurgery.
Methods And Materials: A mathematical formula was derived to predict the peripheral isodose volume, such as the 12-Gy isodose volume, with increasing margins by millimeters. The empirical parameters of the formula were derived from a cohort of brain tumor and surgical tumor resection cavity cases (n=15) treated with the Gamma Knife Perfexion.
The use of stereotactic body radiotherapy for metastatic spinal tumours is increasing. Serious adverse events for this treatment include vertebral compression fracture (VCF) and radiation myelopathy. Although VCF is a fairly low-risk adverse event (approximately 5% risk) after conventional radiotherapy, crude risk estimates for VCF after spinal SBRT range from 11% to 39%.
View Article and Find Full Text PDFBackground: Brain metastases affect up to 30% of patients with cancer. Management of brain metastases continues to evolve with ever increasing focus on cognitive preservation and quality of life. This manuscript reviews current state of brain metastases management and discusses various treatment controversies with focus on future clinical trials.
View Article and Find Full Text PDFAmerican College of Radiology and American Society for Radiation Oncology Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). SRS is a safe and efficacious treatment option of a variety of benign and malignant disorders involving intracranial structures and selected extracranial lesions. SRS involves a high dose of ionizing radiation with a high degree of precision and spatial accuracy.
View Article and Find Full Text PDFSpine stereotactic body radiotherapy is based on delivering high biologically effective doses to spinal metastases, with the intent to maximize both tumor and pain control. The purpose of this review is to outline the technical details of spine stereotactic body radiotherapy, contrast clinical outcomes to low biologically effective dose conventional palliative radiotherapy, discuss the role of surgery in the era of spine stereotactic body radiotherapy, and summarize the major serious adverse events that patients would otherwise not be at risk of with conventional radiotherapy.
View Article and Find Full Text PDFObject: Determining accurate target volume is critical for both prescribing and evaluating stereotactic radiosurgery (SRS) treatments. The aim of this study was to determine the reliability of contour-based volume calculations made by current major SRS platforms.
Methods: Spheres ranging in diameter from 6.
Object: The goal of this study was to develop a technique for performing submillimeter high-precision volume-staged Gamma Knife surgery and investigate its potential benefits in comparison with hypofractionated stereotactic radiotherapy (SRT) for treating large arteriovenous malformations (AVMs).
Methods: The authors analyzed 7 pediatric AVM cases treated with volume-staged stereotactic radiosurgery (SRS) using the Gamma Knife Perfexion at the University of California, San Francisco. The target and normal tissue contours from each case were exported for hypofractionated treatment planning based on the Gamma Knife Extend system or the CyberKnife SRT.