Publications by authors named "David A Joy"

Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic factors, or disease. The structural complexity and disease-relevance of mitochondria have stimulated efforts to generate image analysis tools for describing mitochondrial morphology for therapeutic development. Using high-content analysis, we measured multiple morphological parameters and employed unbiased feature clustering to identify the most robust pair of texture metrics that described mitochondrial state.

View Article and Find Full Text PDF

In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture.

View Article and Find Full Text PDF

Since the 2008 publication of the reports of the Commission on Social Determinants of Health and its nine knowledge networks, substantial research has been undertaken to document and describe health inequities. The COVID-19 pandemic has underscored the need for a deeper understanding of, and broader action on, the social determinants of health. Building on this unique and critical opportunity, the World Health Organization is steering a multi-country Initiative to reduce health inequities through an action-learning process in 'Pathfinder' countries.

View Article and Find Full Text PDF

During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues.

View Article and Find Full Text PDF

Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors.

View Article and Find Full Text PDF

Lineage tracing is a powerful tool in developmental biology to interrogate the evolution of tissue formation, but the dense, three-dimensional nature of tissue limits the assembly of individual cell trajectories into complete reconstructions of development. Human induced pluripotent stem cells (hiPSCs) can recapitulate aspects of developmental processes, providing an in vitro platform to assess the dynamic collective behaviors directing tissue morphogenesis. Here, we trained an ensemble of neural networks to track individual hiPSCs in time-lapse microscopy, generating longitudinal measures of cell and cellular neighborhood properties on timescales from minutes to days.

View Article and Find Full Text PDF

Although coronavirus disease 2019 (COVID-19) causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human induced pluripotent stem cell (iPSC)-derived heart cells to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural genes corroborates adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and nuclear disruption.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) possess the ability to self-organize into complex tissue-like structures; however, the genetic mechanisms and multicellular dynamics that direct such patterning are difficult to control. Here, we pair live imaging with controlled induction of gene knockdown by CRISPR interference (CRISPRi) to generate changes within subpopulations of human PSCs, allowing for control over organization and analysis of emergent behaviors. Specifically, we use forced aggregation of mixtures of cells with and without an inducible CRISPRi system to knockdown molecular regulators of tissue symmetry.

View Article and Find Full Text PDF

Although COVID-19 causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human iPSC-derived heart cells to SARS-CoV-2 revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural proteins corroborated adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and numerous iPSC-cardiomyocytes lacking nuclear DNA.

View Article and Find Full Text PDF

Native cardiac tissue is composed of heterogeneous cell populations that work cooperatively for proper tissue function; thus, engineered tissue models have moved toward incorporating multiple cardiac cell types in an effort to recapitulate native multicellular composition and organization. Cardiac tissue models composed of stem cell-derived cardiomyocytes (CMs) require inclusion of non-myocytes to promote stable tissue formation, yet the specific contributions of the supporting non-myocyte population on the parenchymal CMs and cardiac microtissues have to be fully dissected. This gap can be partly attributed to limitations in technologies able to accurately study the individual cellular structure and function that comprise intact three-dimensional (3D) tissues.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) have the intrinsic ability to self-organize into complex multicellular organoids that recapitulate many aspects of tissue development. However, robustly directing morphogenesis of hPSC-derived organoids requires novel approaches to accurately control self-directed pattern formation. Here, we combined genetic engineering with computational modeling, machine learning, and mathematical pattern optimization to create a data-driven approach to control hPSC self-organization by knock down of genes previously shown to affect stem cell colony organization, CDH1 and ROCK1.

View Article and Find Full Text PDF

Understanding the relationship between parenchymal and supporting cell populations is paramount to recapitulate the multicellular complexity of native tissues. Incorporation of stromal cells is widely recognized to be necessary for the stable formation of stem cell-derived cardiac tissues; yet, the types of stromal cells used have varied widely. This study systematically characterized several stromal populations and found that stromal phenotype and morphology was highly variable depending on cell source and exerted differential impacts on cardiac tissue function and induced pluripotent stem cell-cardiomyocyte phenotype.

View Article and Find Full Text PDF

Morphogenesis involves interactions of asymmetric cell populations to form complex multicellular patterns and structures comprised of distinct cell types. However, current methods to model morphogenic events lack control over cell-type co-emergence and offer little capability to selectively perturb specific cell subpopulations. Our system interrogates cell-cell interactions and multicellular organization within human induced pluripotent stem cell (hiPSC) colonies.

View Article and Find Full Text PDF