Potable source-water reservoirs are the main water supplies in many urbanizing regions, yet their long-term responses to cultural eutrophication are poorly documented in comparison with natural lakes, creating major management uncertainties. Here, long-term discrete data (June 2006-June 2018) for classical eutrophication water quality indicators, continuous depth-profile data for dissolved oxygen (DO), and an enhanced hybrid statistical trend analysis model were used to evaluate the eutrophication status of a potable source-water reservoir. Based on classical indicators (nitrogen, N and phosphorus, P concentrations and ratios; phytoplankton biomass as chlorophyll a, chl a; and trophic state indices), the reservoir was eutrophic to hypereutrophic and stoichiometrically imbalanced.
View Article and Find Full Text PDFEnviron Sci Technol
February 2009
We examined Hg(II) bioaccumulation and compartmentalization patterns in conjunction with antioxidant responses in four aquatic insect species: two caddisflies (Chimarra sp. and Hydropsyche betteni) and two mayflies (Maccaffertium modestum and Isonychia sp). Total antioxidant capabilities differed among unexposed larvae, with both caddisfly species exhibiting elevated antioxidant activities relative to the mayflies.
View Article and Find Full Text PDFBackground And Purpose: Some previous research links stroke incidence to weather, some links strokes to air pollution, and some report seasonal effects. Alveolar inflammation was proposed as the mechanistic link. We present a unified model of time, weather, pollution, and upper respiratory infection (URI) incidence.
View Article and Find Full Text PDF