Publications by authors named "David A Christian"

Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptosporidium causes severe diarrhea in people with weakened T cell functions, making it hard to control the infection.
  • Scientists engineered Cryptosporidium to express a protein that triggers T cell responses, leading to the expansion of specific CD8 T cells that produce interferon-gamma (IFN-γ) to help control parasite growth.
  • The study shows that while the infection targets intestinal cells, the collaboration between these cells and type 1 conventional dendritic cells is essential for effective CD8 T cell responses against Cryptosporidium.
View Article and Find Full Text PDF

is an enteric pathogen that is a prominent cause of diarrheal disease. Control of this infection requires CD4 T cells, though the processes that lead to T cell-mediated resistance have been difficult to assess. Here, parasites that express MHCII-restricted model antigens were generated to dissect the early events that influence CD4 T cell priming and effector function.

View Article and Find Full Text PDF

causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 T cells.

View Article and Find Full Text PDF

At homeostasis, a substantial proportion of Foxp3 T regulatory cells (T) have an activated phenotype associated with enhanced TCR signals and these effector T cells (eT) co-express elevated levels of PD-1 and CTLA-4. Short term blockade of the PD-1 or CTLA-4 pathways results in increased eT populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eT cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II.

View Article and Find Full Text PDF

The T-box transcription factor T-bet is regarded as a "master regulator" of CD4+ Th1 differentiation and IFN-γ production. However, in multiple models of infection, T-bet appears less critical for CD8+ T cell expansion and effector function. Here, we show that following vaccination with a replication-deficient strain of Toxoplasma gondii, CD8+ T cell expression of T-bet is required for optimal expansion of parasite-specific effector CD8+ T cells.

View Article and Find Full Text PDF

In the peritoneal cavity, the omentum contains fat-associated lymphoid clusters (FALCs) whose role in response to infection is poorly understood. After intraperitoneal immunization with , conventional type 1 dendritic cells (cDC1s) were critical to induce innate sources of IFN-γ and cellular changes in the FALCs. Unexpectedly, infected peritoneal macrophages that migrated into the FALCs primed CD8 T cells.

View Article and Find Full Text PDF

Initial TCR engagement (priming) of naive CD8+ T cells results in T cell expansion, and these early events influence the generation of diverse effector and memory populations. During infection, activated T cells can re-encounter cognate antigen, but how these events influence local effector responses or formation of memory populations is unclear. To address this issue, OT-I T cells which express the Nur77-GFP reporter of TCR activation were paired with the parasite Toxoplasma gondii that expresses OVA to assess how secondary encounter with antigen influences CD8+ T cell responses.

View Article and Find Full Text PDF

Phenotypic and transcriptional profiling of regulatory T (T) cells at homeostasis reveals that T cell receptor activation promotes T cells with an effector phenotype (eT) characterized by the production of interleukin-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eT cell activity, whereas during infection with Toxoplasma gondii, early interferon-γ upregulates myeloid cell expression of PD-L1 associated with reduced T cell populations. In infected mice, blockade of PD-L1, complete deletion of PD-1 or lineage-specific deletion of PD-1 in T cells prevents loss of eT cells.

View Article and Find Full Text PDF

The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C.

View Article and Find Full Text PDF

IL-27 controls a diverse range of immune responses in many disease settings. Here, we identify intestinal epithelial cells (IECs) as one of the major IL-27 cellular sources in the gut-associated tissue. Unlike IL-27 secreted by innate immune cells, gut epithelial IL-27 is dispensable for T-bet+ regulatory T cell (T reg cell) differentiation or IL-10 induction.

View Article and Find Full Text PDF

IL-33 is an alarmin required for resistance to the parasite , but its role in innate resistance to this organism is unclear. Infection with promotes increased stromal cell expression of IL-33, and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R NK cells and ILC1s.

View Article and Find Full Text PDF
Article Synopsis
  • CD22 serves as an alternative target for immunotherapy in B cell acute lymphoblastic leukemia (ALL), especially after patients relapse from CD19-directed CAR T cell treatments.
  • In two pilot clinical trials (NCT02588456 and NCT02650414), researchers evaluated a CD22-targeting CAR T cell using a 4-1BB-based design, focusing on safety and antileukemic efficacy, but found unexpectedly low response rates.
  • Further investigation revealed that modifying the CAR's linker led to improved receptor function through autonomous signaling, suggesting that this signaling enhances CAR T cell efficacy and informing the development of a new CAR construct for clinical testing.
View Article and Find Full Text PDF

The ability of Toxoplasma gondii to inject the rhoptry kinase ROP16 into host cells results in the activation of the transcription factors STAT3 and STAT6, but it is unclear how these events impact infection. Here, parasites that inject Cre-recombinase with rhoptry proteins were used to distinguish infected macrophages from those only injected with parasite proteins. Transcriptional profiling revealed that injection of rhoptry proteins alone was sufficient to induce an M2 phenotype that is dependent on STAT3 and STAT6, but only infected cells displayed reduced expression of genes associated with antimicrobial activity and protective immunity.

View Article and Find Full Text PDF

Whether conventional dendritic cells (cDC) acquire subset identity under direction of Wnt family glycoproteins is unknown. We demonstrate that Wnt4, a β-catenin-independent Wnt ligand, is produced by both hematopoietic and nonhematopoietic cells and is both necessary and sufficient for preconventional DC1/cDC1 maintenance. Whereas bone marrow cDC precursors undergo phosphoJNK/c-Jun activation upon Wnt4 treatment, loss of cDC Wnt4 in CD11cWnt4 mice impaired differentiation of CD24, Clec9A, CD103 cDC1 compared with CD11c controls.

View Article and Find Full Text PDF

Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression.

View Article and Find Full Text PDF

Oral infection of C57BL/6J mice with results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4 T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that infection induces a dysbiosis dominated by and an increased potential for nitrate respiration.

View Article and Find Full Text PDF

Filamentous viruses are common in nature and efficiently deliver - sometimes via aerosol - genetic material, viral proteins, and other factors to animals and plants. Aerosolization can be a severe physicochemical test of the stability of any filamentous assembly whether it is made from natural polymers such as viral proteins or synthetic polymers. Here, worm-like "filomicelles" that self-assemble in water from amphiphilic block copolymers were investigated as aerosolized delivery vehicles.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression.

View Article and Find Full Text PDF

Respiratory paramyxoviruses are important causes of morbidity and mortality, particularly of infants and the elderly. In humans, a T helper (Th)2-biased immune response to these infections is associated with increased disease severity; however, little is known about the endogenous regulators of these responses that may be manipulated to ameliorate pathology. IL-27, a cytokine that regulates Th2 responses, is produced in the lungs during parainfluenza infection, but its role in disease pathogenesis is unknown.

View Article and Find Full Text PDF

An important function of the blood-brain barrier is to exclude pathogens from the central nervous system, but some microorganisms benefit from the ability to enter this site. It has been proposed that Toxoplasma gondii can cross biological barriers as a motile extracellular form that uses transcellular or paracellular migration, or by infecting a host cell that then crosses the blood-brain barrier. Unexpectedly, analysis of acutely infected mice revealed significant numbers of free parasites in the blood and the presence of infected endothelial cells in the brain vasculature.

View Article and Find Full Text PDF

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field.

View Article and Find Full Text PDF

Cutaneous leishmaniasis causes a spectrum of diseases from self-healing to severe nonhealing lesions. Defining the factors contributing to lesion resolution may help in developing new therapies for those patients with chronic disease. We found that infection with Leishmania major increases the expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptor (VEGFR)-2 and is associated with significant changes in the blood and lymphatic vasculature at the site of infection.

View Article and Find Full Text PDF

Dendritic cells (DCs) are critical for resistance to Toxoplasma gondii, and infection with this pathogen leads to increased numbers of DCs at local sites of parasite replication and in secondary lymphoid organs, but the factors that regulate this expansion are poorly understood. The cytokine Flt3 ligand (Flt3L) is critical for the generation and maintenance of DCs, and Flt3L(-/-) mice were found to be highly susceptible to acute toxoplasmosis. This phenotype correlated with decreased production of IL-12 and IFN-γ, as well as impaired NK cell responses.

View Article and Find Full Text PDF

The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics.

View Article and Find Full Text PDF