Publications by authors named "David A C Pink"

Background: Tipburn is a physiological disorder of lettuce (Lactuca spp.). It causes discoloration and collapse of leaf margins, leading to unsaleable crops in both protected (glasshouse, hydroponic) and outdoor production systems.

View Article and Find Full Text PDF

Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied.

View Article and Find Full Text PDF

A unique, global onion diversity set was assembled, genotyped and phenotyped for beneficial traits. Accessions with strong basal rot resistance and increased seedling vigour were identified along with associated markers. Conserving biodiversity is critical for safeguarding future crop production.

View Article and Find Full Text PDF

Minimally processed salad packs often suffer from discolouration on cut leaf edges within a few days after harvest. This limits shelf life of the product and results in high wastage. Recombinant inbred lines (RILs) derived from a cross between lettuce cvs.

View Article and Find Full Text PDF

Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas).

View Article and Find Full Text PDF

A diverse collection of modern, heirloom and specialty cultivars, plant introduction (PI) accessions, and breeding lines of lettuce were screened for susceptibility to lettuce dieback, which is a disease caused by soilborne viruses of the family Tombusviridae. Susceptibility was evaluated by visual symptom assessment in fields that had been previously shown to be infested with Lettuce necrotic stunt virus. Of the 241 genotypes tested in multiple field experiments, 76 remained symptom-free in infested fields and were therefore classified as resistant to dieback.

View Article and Find Full Text PDF