Publications by authors named "Davi R Ortega"

Unlabelled: Chemosensory systems allow bacteria to respond and adapt to environmental conditions. Many bacteria contain more than one chemosensory system, but knowledge of their specific roles in regulating different functions remains scarce. Here, we address this issue by analyzing the function of the F6, F8, and alternative (non-motility) cellular functions (ACF) chemosensory systems of the model plant pathogen pv.

View Article and Find Full Text PDF

The process by which bacterial cells build their intricate flagellar motility apparatuses has long fascinated scientists. Our understanding of this process comes mainly from studies of purified flagella from two species, Escherichia coli and Salmonella enterica. Here, we used electron cryo-tomography (cryo-ET) to image the assembly of the flagellar motor in situ in diverse Proteobacteria: Hylemonella gracilis, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Shewanella oneidensis.

View Article and Find Full Text PDF

The prokaryotic chemotaxis system is arguably the best-understood signaling pathway in biology. In all previously described species, chemoreceptors organize into a hexagonal (P6 symmetry) extended array. Here, we report an alternative symmetry (P2) of the chemotaxis apparatus that emerges from a strict linear organization of the histidine kinase CheA in Treponema denticola cells, which possesses arrays with the highest native curvature investigated thus far.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been released.
  • You can find the link to this amendment at the top of the paper.
  • This update provides additional information or corrections to the initial content.
View Article and Find Full Text PDF

Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ.

View Article and Find Full Text PDF

Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea.

View Article and Find Full Text PDF

How complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway.

View Article and Find Full Text PDF

The bacterial flagellum is an amazing nanomachine. Understanding how such complex structures arose is crucial to our understanding of cellular evolution. We and others recently reported that in several Gammaproteobacterial species, a relic subcomplex comprising the decorated P and L rings persists in the outer membrane after flagellum disassembly.

View Article and Find Full Text PDF

Bacteria and archaea employ dedicated signal transduction systems that modulate gene expression, second-messenger turnover, quorum sensing, biofilm formation, motility, host-pathogen and beneficial interactions. The updated MiST database provides a comprehensive classification of microbial signal transduction systems. This update is a result of a substantial scaling to accommodate constantly growing microbial genomic data.

View Article and Find Full Text PDF

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly.

View Article and Find Full Text PDF

Three-dimensional electron microscopy techniques like electron tomography provide valuable insights into cellular structures, and present significant challenges for data storage and dissemination. Here we explored a novel method to publicly release more than 11,000 such datasets, more than 30 TB in total, collected by our group. Our method, based on a peer-to-peer file sharing network built around a blockchain ledger, offers a distributed solution to data storage.

View Article and Find Full Text PDF

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown.

View Article and Find Full Text PDF

Identifying chemoreceptors in sequenced bacterial genomes, revealing their domain architecture, inferring their evolutionary relationships, and comparing them to chemoreceptors of known function become important steps in genome annotation and chemotaxis research. Here, we describe bioinformatics procedures that enable such analyses, using two closely related bacterial genomes as examples.

View Article and Find Full Text PDF

Cell division in many eukaryotes is driven by a ring containing actin and myosin. While much is known about the main proteins involved, the precise arrangement of actin filaments within the contractile machinery, and how force is transmitted to the membrane, remains unclear. Here we use cryosectioning and cryofocused ion beam milling to gain access to cryopreserved actomyosin rings in for direct 3D imaging by electron cryotomography.

View Article and Find Full Text PDF

In contrast to , a model organism for chemotaxis that has 5 chemoreceptors and a single chemosensory pathway, PAO1 has a much more complex chemosensory network, which consists of 26 chemoreceptors feeding into four chemosensory pathways. While several chemoreceptors were rigorously linked to specific pathways in a series of experimental studies, for most of them this information is not available. Thus, we addressed the problem computationally.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail-like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail-like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors.

View Article and Find Full Text PDF

The discovery of giant viruses blurred the sharp division between viruses and cellular life. Giant virus genomes encode proteins considered as signatures of cellular organisms, particularly translation system components, prompting hypotheses that these viruses derived from a fourth domain of cellular life. Here we report the discovery of a group of giant viruses (Klosneuviruses) in metagenomic data.

View Article and Find Full Text PDF

Electron cryotomography (ECT) enables the 3D reconstruction of intact cells in a near-native state. Images produced by ECT have led to the proposal that an ancient sporulation-like event gave rise to the second membrane in diderm bacteria. Tomograms of sporulating monoderm and diderm bacterial cells show how sporulation can lead to the generation of diderm cells.

View Article and Find Full Text PDF

Type IV pili (T4P) are filamentous appendages found on many Bacteria and Archaea. They are helical fibres of pilin proteins assembled by a multi-component macromolecular machine we call the basal body. Based on pilin features, T4P are classified into type IVa pili (T4aP) and type IVb pili (T4bP).

View Article and Find Full Text PDF

Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems.

View Article and Find Full Text PDF

Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli.

View Article and Find Full Text PDF

Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins.

View Article and Find Full Text PDF

Summary: Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved.

View Article and Find Full Text PDF

Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner.

View Article and Find Full Text PDF