Protein adsorption to biomaterial surfaces is considered a determining factor for the host response. Here we detail the protein adsorption profiles of alginate hydrogel microspheres relevant for cell therapy using mass spectrometry (MS)-based proteomics. The investigated microspheres include sulfated alginate (SA), high G alginate (HiG), and poly-l-lysine coated alginate (AP), which previously have been shown to exhibit different inflammatory and fibrotic responses.
View Article and Find Full Text PDFBackground: Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations.
Methods: Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry.
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear.
View Article and Find Full Text PDFWe show experimentally that gaseous CO(2) intercalates into the interlayer space of the synthetic smectite clay Na-fluorohectorite at conditions not too far from ambient. The mean interlayer repetition distance of the clay when CO(2) is intercalated is found to be 12.5 Å for the conditions -20 °C and 15 bar.
View Article and Find Full Text PDF