Small
February 2024
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials.
View Article and Find Full Text PDFThe advances of surface-supported metal-organic framework (SURMOF) thin-film synthesis have provided a novel strategy for effectively integrating metal-organic framework (MOF) structures into electronic devices. The considerable potential of SURMOFs for electronics results from their low cost, high versatility, and good mechanical flexibility. Here, the first observation of room-temperature negative differential resistance (NDR) in SURMOF vertical heterojunctions is reported.
View Article and Find Full Text PDFThe investigation of enhanced Raman signal effects and the preparation of high-quality, reliable surface-enhanced Raman scattering (SERS) substrates is still a hot topic in the SERS field. Herein, we report an effect based on the shape-induced enhanced Raman scattering (SIERS) to improve the action of gold nanorods (AuNRs) as a SERS substrate. Scattered electric field simulations reveal that bare V-shaped Si substrates exhibit spatially distributed interference patterns from the incident radiation used in the Raman experiment, resulting in constructive interference for an enhanced Raman signal.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes-jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices.
View Article and Find Full Text PDFOrganic diodes and molecular rectifiers are fundamental electronic devices that share one common feature: current rectification ability. Since both present distinct spatial dimensions and working principles, the rectification of organic diodes is usually achieved by interface engineering, while changes in molecular structures commonly control the molecular rectifiers' features. Here, we report on the first observation of temperature-driven inversion of the rectification direction (IRD) in ensemble molecular diodes (EMDs) prepared in a vertical stack configuration.
View Article and Find Full Text PDFThe effective utilization of vertical organic transistors in high current density applications demands further reduction of channel length (given by the thickness of the organic semiconducting layer and typically reported in the 100 nm range) along with the optimization of the source electrode structure. Here we present a viable solution by applying rolled-up metallic nanomembranes as the drain-electrode (which enables the incorporation of few nanometer-thick semiconductor layers) and by lithographically patterning the source-electrode. Our vertical organic transistors operate at ultra-low voltages and demonstrate high current densities (~0.
View Article and Find Full Text PDFMemristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands.
View Article and Find Full Text PDFEthanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal.
View Article and Find Full Text PDFThe combination of organic and inorganic materials to create hybrid nanostructures is an effective approach to develop label-free platforms for biosensing as well as to overcome eventual leakage current-related problems in capacitive sensors operating in liquid. In this work, we combine an ultra-thin high-k dielectric layer (AlO) with a nanostructured organic functional tail to create a platform capable of monitoring biospecific interactions directly in liquid at very low analyte concentrations. As a proof of concept, a reversible label-free glutathione-S-transferase (GST) biosensor is demonstrated.
View Article and Find Full Text PDF