Publications by authors named "Davi Gasparini Fernandes Cunha"

Efficient water quality monitoring is a central aspect of water resources management, especially in developing countries, where water quality is under high anthropogenic pressure and resources for monitoring are usually limited. Here, we evaluated an alternative to optimize water quality parameters (WQPs) in the water quality monitoring network (WQMN) of the most populous state in Brazil (São Paulo State). We focused on the monitoring goal of identifying water quality temporal trends, selecting WQPs with high statistical explanatory power and those that were particularly sensitive to natural and anthropogenic perturbations.

View Article and Find Full Text PDF

The global prevalence of obsolete or unsafe old dams necessitates the development of effective restoration approaches and expanded knowledge in this field. This study evaluates the effects of dam removal on carbon processing by measuring key ecosystem functions - organic matter decomposition, whole-reach metabolism, and gaseous carbon fluxes - in a mountainous Mediterranean stream. We compared these functions among three reaches: one where a dam was removed (restored), one with an intact dam (impacted), and one in natural conditions (reference).

View Article and Find Full Text PDF

Water quality monitoring networks (WQMNs) that capture both the temporal and spatial dimensions are essential to provide reliable data for assessing water quality trends in surface waters, as well as for supporting initiatives to control anthropogenic activities. Meeting these monitoring goals as efficiently as possible is crucial, especially in developing countries where the financial resources are limited and the water quality degradation is accelerating. Here, we asked if sampling frequency could be reduced while maintaining the same degree of information as with bimonthly sampling in the São Paulo State (Brazil) WQMN.

View Article and Find Full Text PDF

According to the World Health Organization (WHO), the definition of water quality indicators, including contaminants of emerging concern (CECs), associated with the development of multi-barrier approaches for wastewater treatment, are crucial steps towards direct potable reuse of water. The aims of this study were 1) quantifying twelve CECs (including pharmaceutical, stimulant, and artificial sweetener compounds) in both untreated and treated wastewater samples in a Brazilian wastewater treatment plant (WWTP) using bidimensional liquid chromatography coupled with tandem mass spectrometry, allowing the selection of five marker (i.e.

View Article and Find Full Text PDF

Toxic cyanobacterial blooms in aquatic ecosystems are associated to both public health and environmental concerns worldwide. Depending on the treatment technologies used, the removal capacity of cyanotoxins by drinking water treatment plants (DWTPs) is not sufficient to reach safe levels in drinking water. Likewise, controlling these blooms with algaecide may impair the efficiency of DWTPs due to the possible lysis of cyanobacterial cells and consequent release of cyanotoxins.

View Article and Find Full Text PDF

Due to anthropogenic actions, the presence of pollutants in water bodies, such as toxic metals, are increasingly negatively affecting water quality, biodiversity and sustainable goals worldwide. Therefore, decentralization of water pollution monitoring with low-cost devices, such as using smartphones, suggests an innovative green technology for in situ and real-time control. In this study, a Handheld Smartphone Spectrophotometry System (HSSS) was developed to estimate copper and iron concentration water samples.

View Article and Find Full Text PDF

The COVID-19 pandemic required a wide range of adaptations to the way that water sector operated globally. This paper looks into the impact of the COVID-19 pandemic on Brazilian water sector and evaluates the water sector's organisational resilience from the lens of water professionals. This study uses British Standard (BS 65000:2014)'s Resilience Maturity Scale method to evaluate organisational resilience in water sector under two defined scenarios of before and during the pandemic.

View Article and Find Full Text PDF

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics.

View Article and Find Full Text PDF

While the presence of microcystin-LR (MC-LR) in raw water from eutrophic reservoirs poses human health concerns, the risks associated with the ingestion of MC-LR in drinking water are not fully elucidated. We used a time series of MC-LR in raw water from tropical urban reservoirs in Brazil to estimate the hazard quotients (HQs) for non-carcinogenic health effects and the potential ingestion of MC-LR through drinking water. We considered scenarios of MC-LR removal in the drinking water treatment plants (DWTPs) of two supply systems (Cascata and Guarapiranga).

View Article and Find Full Text PDF

Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e.

View Article and Find Full Text PDF

Water quality monitoring networks (WQMNs) are essential to provide good data for management decisions. Nevertheless, some WQMNs may not appropriately reflect the conditions of the water bodies and their temporal/spatial dimensions, more particularly in developing countries. Also, some WQMNs may use more resources to attain management goals than necessary and can be improved.

View Article and Find Full Text PDF

Activated carbon (AC) can be used for the removal of emerging contaminants (e.g., drugs) in water and wastewater treatment plants.

View Article and Find Full Text PDF

Trophic state indexes (TSI) guide management strategies regarding eutrophication control worldwide. Such indexes usually consider chlorophyll-a (Chl-a), total phosphorus (TP), and Secchi disk depth (SDD) as independent variables for estimating aquatic productivity and the degree of impairment. TSIs for each of these components are frequently averaged to produce a single TSI value associated with a trophic state classification (e.

View Article and Find Full Text PDF

The necessity of incorporating a resilience-informed approach into urban planning and its decision-making is felt now more than any time previously, particularly in low and middle income countries. In order to achieve a successful transition to sustainable, resilient and cost-effective cities, there is a growing attention given to more effective integration of nature-based solutions, such as Sustainable Drainage Systems (SuDS), with other urban components. The experience of SuDS integration with urban planning, in developed cities, has proven to be an effective strategy with a wide range of advantages and lower costs.

View Article and Find Full Text PDF

Urban streams are vulnerable to a range of impacts, leading to the impairment of ecosystem services. However, studies on phytoplankton growth in tropical lotic systems are still limited. Citizen science approaches use trained volunteers to collect environmental data.

View Article and Find Full Text PDF

Global metrics of land cover and land use provide a fundamental basis to examine the spatial variability of human-induced impacts on freshwater ecosystems. However, microscale processes and site specific conditions related to bank vegetation, pollution sources, adjacent land use and water uses can have important influences on ecosystem conditions, in particular in smaller tributary rivers. Compared to larger order rivers, these low-order streams and rivers are more numerous, yet often under-monitored.

View Article and Find Full Text PDF

Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay).

View Article and Find Full Text PDF

Freshwater ecosystems are severely threatened by urban development and agricultural intensification. Increased occurrence of algal blooms is a main issue, and the identification of local dynamics and drivers is hampered by a lack of field data. In this study, data from 13 cities (250 water bodies) were used to examine the capacity of trained community members to assess elevated phytoplankton densities in urban and peri-urban freshwater ecosystems.

View Article and Find Full Text PDF

Reservoirs are artificial ecosystems with physical, chemical, and biological transitional characteristics between rivers and lakes. Greater water retention time in reservoirs provides conditions for cycling materials inputs from upstream waters through sedimentation, biological assimilation and other biogeochemical processes. We investigated the effects of reservoirs on the water quantity and quality in the Great Plains (Kansas, USA), an area where little is known about these dominant hydrologic features.

View Article and Find Full Text PDF