Background: Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.
Methodology/principle Findings: In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived.
Id genes have been demonstrated to be upregulated in a wide variety of human malignancies and their expression has been correlated with disease prognosis; however, little is known about the mechanisms of Id gene activation in tumors. We have previously shown that the helix-loop-helix transcription factor, Id1, is highly expressed in primary human melanomas during the radial growth phase and that Id1 is a transcriptional repressor of the familial melanoma gene CDKN2A. Here we use a series of melanoma cell lines that recapitulate the phenotypic characteristics of melanomas at varying stages of malignant progression to evaluate the expression levels of Id1 in this model system and determine the mechanism of Id1 dysregulation in these tumor cells.
View Article and Find Full Text PDF