Annu Int Conf IEEE Eng Med Biol Soc
August 2015
Modulation of neural activity through electrical stimulation of tissue is an effective therapy for neurological diseases such as Parkinson's disease and essential tremor. Researchers are exploring improving therapy through adjustment of stimulation parameters based upon sensed data. This requires classifiers to extract features and estimate patient state.
View Article and Find Full Text PDFFront Neural Circuits
January 2013
While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state.
View Article and Find Full Text PDFChronically implantable, closed-loop neuromodulation devices with concurrent sensing and stimulation hold promise for better understanding the nervous system and improving therapies for neurological disease. Concurrent sensing and stimulation are needed to maximize usable neural data, minimize time delays for closed-loop actuation, and investigate the instantaneous response to stimulation. Current systems lack concurrent sensing and stimulation primarily because of stimulation interference to neural signals of interest.
View Article and Find Full Text PDF