Background: Walking aids such as walking frames offer support during walking, yet paradoxically, people who self-report using them remain more likely to fall than people who do not. Lifting of walking frames when crossing door thresholds or when turning has shown to reduce stability, and certain design features drive the need to lift (e.g.
View Article and Find Full Text PDFBackground: Walking aids are designed for structural support during walking, however, surprisingly self-reported use of a walking aid ("Yes, I use one.") has been identified as a risk factor for falling. Adjustment and design of walking aids may affect their usefulness in facilitating a stable walking pattern.
View Article and Find Full Text PDFThe Fit4Purpose project aims to develop upper limb prosthetic devices which are suitable for deployment in lower- and middle-income countries (LMIC's). Open-frame trans-radial socket designs are being considered, formed of several, linked components, including pads which interface directly with the skin surface. A mechanical tool has been developed to aid the design of pad shapes, using an array of square brass bars of varying lengths (i.
View Article and Find Full Text PDFBackground: Walking aids are issued to older adults to prevent falls, however, paradoxically their use has been identified as a risk factor for falling. To prevent falls, walking aids must be used in a stable manner, but it remains unknown to what extent associated clinical guidance is adhered to at home, and whether following guidance facilitates a stable walking pattern. It was the aim of this study to investigate adherence to guidance on walking frame use, and to quantify user stability whilst using walking frames.
View Article and Find Full Text PDFWith the advent of miniaturized sensing technology, which can be body-worn, it is now possible to collect and store data on different aspects of human movement under the conditions of free living. This technology has the potential to be used in automated activity profiling systems which produce a continuous record of activity patterns over extended periods of time. Such activity profiling systems are dependent on classification algorithms which can effectively interpret body-worn sensor data and identify different activities.
View Article and Find Full Text PDFThere is a common clinical belief that transverse plane tibial rotation is controlled by the rearfoot. Although distal structures may influence the motion of the tibia, transverse plane tibial rotation could be determined by the proximal hip musculature. Cadaver studies have identified gluteus maximus as having the largest capacity for external rotation of the hip.
View Article and Find Full Text PDF