Nitrogen oxides (NO = NO + NO) are important atmospheric pollutants that are directly harmful to human health. Recently in urban and industrial areas, synthetic materials have been developed and deployed to photocatalytically oxidize NO to nitrate (NO) in order to improve air quality. We show that the natural presence of small amounts (≤5%) of titanium oxides, such as anatase and rutile, can also drive NO oxidation to nitrate in soils under UV-visible irradiation.
View Article and Find Full Text PDFCompost represents an important input for sustainable agriculture, but the use of diverse compost types causes uncertain outcomes. Here we performed a global meta-analysis with over 2,000 observations to determine whether a precision compost strategy (PCS) that aligns suitable composts and application methods with target crops and growth environments can advance sustainable food production. Eleven key predictors of compost (carbon-to-nutrient ratios, pH and salt content electric conductivity), management (nitrogen N supply) and biophysical settings (crop type, soil texture, soil organic carbon, pH, temperature and rainfall) determined 80% of the effect on crop yield, soil organic carbon and nitrous oxide emissions.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are able to provide key ecosystem services, protecting plants against biotic and abiotic stresses. Here, we hypothesized that a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) could enhance P uptake in maize plants under soil water stress.
View Article and Find Full Text PDFMicro and macroplastics are emerging contaminants in agricultural settings, yet their impact on nitrogen (N) cycling and partitioning in plant-soil-microbial systems is poorly understood. In this mesocosm-scale study, spring barley (Hordeum vulgare L.) was exposed to macro or microplastic produced from low density polyethylene (LDPE) or biodegradable plastic at concentrations equivalent to 1, 10 and 20 years of plastic mulch film use.
View Article and Find Full Text PDFAccording to the available guidelines, good practices for calculating nitrous oxide (NO) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period.
View Article and Find Full Text PDFBiochar application is not only being widely promoted as an ideal strategy to mitigate global climate warming, but it also has the advantage of reducing heavy metal bioavailability and migration in the soil. However, studies on the effects of field aging on biochar to reduce heavy metals from the soil are still limited. The present study aimed to explore the effects and mechanisms of aged biochar added to the soil planted with pepper plants on cadmium (Cd) uptake.
View Article and Find Full Text PDFUpon environmental weathering, plastic materials form smaller sized microplastics, of which the contamination in agricultural fields is of significant importance and increasing social concern. Plastic mulch films are considered a major source of agricultural soil microplastic pollution. However, the mechanism and kinetics of microplastic formation from plastic mulch films were rarely understood.
View Article and Find Full Text PDFPig production contributes considerably to land use and greenhouse gas (GHG) and reactive nitrogen (Nr) emissions. Land use strategies were widely proposed, but the spillover effects on biological flow are rarely explored. Here, we simultaneously assessed the carbon (C), nitrogen (N), and cropland footprints of China's pig production at the provincial scale in 2017.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2021
Maize production is critical in tropical/subtropical regions, especially in developing countries where maize is a staple food. However, its environmental costs remain unclear. Southwest China is a tropical/subtropical region with large-scale maize production in each of its sub-regions.
View Article and Find Full Text PDFRuminant livestock are raised under diverse cultural and environmental production systems around the globe. Ruminant livestock can play a critical role in food security by supplying high-quality, nutrient-dense food with little or no competition for arable land while simultaneously improving soil health through vital returns of organic matter. However, in the context of climate change and limited land resources, the role of ruminant-based systems is uncertain because of their reputed low efficiency of feed conversion (kilogram of feed required per kilogram of product) and the production of methane as a by-product of enteric fermentation.
View Article and Find Full Text PDFThe combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China's vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (NO emission, N leaching and NH volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers.
View Article and Find Full Text PDFExploiting native soil phosphorus (P) and the large reservoirs of residual P accumulated over decades of cultivation, namely "legacy P", has great potential to overcome the high demand of P fertilisers in Brazilian cropping systems. Long-term field experiments have shown that a large proportion (> 70%) of the surplus P added via fertilisers remains in the soil, mainly in forms not readily available to crops. An important issue is if the amount of legacy P mobilized from soil is sufficient for the crop nutritional demand and over how long this stored soil P can be effectively 'mined' by crops in a profitable way.
View Article and Find Full Text PDFJ Dairy Sci
July 2020
Agriculture is the largest source of ammonia (NH) emissions. As NH is an indirect greenhouse gas, NH measurements are crucial to improving greenhouse gas emission inventory estimates. Moreover, NH emissions have wider implications for environmental and human health.
View Article and Find Full Text PDFHigh input - high output greenhouse vegetable systems are responsible for nutrient surpluses and environmental losses. Integrated strategies that improve soil, crop and nutrient management are needed to ensure more sustainable production systems. We conducted a two-year field experiment to evaluate the potential of integrated soil-crop system management (ISSM) practices to improve the productivity and environmental outcomes from an intensive greenhouse tomato production system in the Yangtze River Basin, China.
View Article and Find Full Text PDFCover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis.
View Article and Find Full Text PDFHow we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses.
View Article and Find Full Text PDFThe anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any 'new' material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH) and nitrous oxide (NO) emissions to air and nitrate (NO) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales.
View Article and Find Full Text PDFGaseous emissions from animal manure are considerable contributor to global ammonia (NH) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH, methane (CH), and nitrous oxide (NO) (direct and indirect) losses from four typical swine manure management systems (MMSs).
View Article and Find Full Text PDFAnaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017.
View Article and Find Full Text PDFSynthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N.
View Article and Find Full Text PDF