Publications by authors named "Daus A"

Tungsten diselenide (WSe) field-effect transistors (FETs) are promising for emerging electronics because of their tunable polarity, enabling complementary transistor technology, and their suitability for flexible electronics through material transfer. In this work, we demonstrate flexible p-type WSe FETs with absolute drain currents || up to 7 μA/μm. We achieve this by fabricating flexible top-gated FETs with a combined WSe and metal contact transfer approach using WSe grown by metal-organic chemical vapor deposition on sapphire.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or HSe precursors at 650 °C.

View Article and Find Full Text PDF

We present a new approach to achieve nanoscale transistors on ultrathin flexible substrates with conventional electron-beam lithography. Full devices are first fabricated on a gold sacrificial layer covering a rigid silicon substrate, and then coated with a polyimide film and released from the rigid substrate. This approach bypasses nanofabrication constraints on flexible substrates: (i) electron-beam surface charging, (ii) alignment inaccuracy due to the wavy substrate, and (iii) restricted thermal budgets.

View Article and Find Full Text PDF

Thermoelectric materials can harvest electrical energy from temperature gradients, and could play a role as power supplies for sensors and other devices. Here, we characterize fundamental in-plane electrical and thermoelectric properties of layered WSe over a range of thicknesses, from 10 to 96 nm, between 300 and 400 K. The devices are electrostatically gated with an ion gel, enabling us to probe both electron and hole regimes over a large range of carrier densities.

View Article and Find Full Text PDF

Managed aquifer recharge has become a standard water resources management practice to promote the development of locally sustainable water supplies and combat water scarcity. However, installation of injection wells for replenishment purposes in urban areas with complex hydrogeology faces many challenges, such as limited land availability, potential impacts on municipal production wells and known subsurface contamination plumes, and complex spatially variable hydraulic connections between aquifer units. To assess the feasibility and cost-effectiveness of injecting advanced treated water (ATW) into a complex urban aquifer system, a Simulation-Optimization (SO) model was developed to automate a systematic search for the most cost-effective locations to install new wells for injecting various quantities of ATW, if feasible.

View Article and Find Full Text PDF

Garlic lost its ability to produce true seeds millennia ago, and today non-fertile commercial cultivars are propagated only vegetatively. Garlic viruses are commonly carried over from one generation of vegetative propagules to the other, while nematodes and arthropods further transmit the pathogens from infected to healthy plants. A recent breakthrough in the production of true (botanical) garlic seeds resulted in rapid scientific progress, but the question of whether viruses are transmitted via seeds remains open and is important for the further development of commercial seed production.

View Article and Find Full Text PDF

Strain engineering is an important method for tuning the properties of semiconductors and has been used to improve the mobility of silicon transistors for several decades. Recently, theoretical studies have predicted that strain can also improve the mobility of two-dimensional (2D) semiconductors, e.g.

View Article and Find Full Text PDF

Real-time thermal sensing on flexible substrates could enable a plethora of new applications. However, achieving fast, sub-millisecond response times even in a single sensor is difficult, due to the thermal mass of the sensor and encapsulation. Here, we fabricate flexible monolayer molybdenum disulfide (MoS) temperature sensors and arrays, which can detect temperature changes within a few microseconds, over 100× faster than flexible thin-film metal sensors.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance.

View Article and Find Full Text PDF

Phase-change memory (PCM) is a promising candidate for data storage in flexible electronics, but its high switching current and power are often drawbacks. In this study, we demonstrate a switching current density of ~0.1 mega-ampere per square centimeter in flexible superlattice PCM, a value that is one to two orders of magnitude lower than in conventional PCM on flexible or silicon substrates.

View Article and Find Full Text PDF

During nonventilated storage of carrots, CO gradually accumulates to high levels and causes modifications in the carrot's microbiome toward dominance of and The lactic acid bacterium secretes a slimy exudate over the surface of the carrots. The objective of this study was to characterize the slime components and the potential cause for its secretion under high CO levels. A proteomic analysis of the exudate revealed bacterial glucosyltransferases as the main proteins, specifically, dextransucrase.

View Article and Find Full Text PDF

In this work, we show the performance improvement of p-type thin-film transistors (TFTs) with Ge 2 Sb 2 Te 5 (GST) semiconductor layers on flexible polyimide substrates, achieved by downscaling of the GST thickness. Prior works on GST TFTs have typically shown poor current modulation capabilities with ON/OFF ratios ≤20 and non-saturating output characteristics. By reducing the GST thickness to 5 nm, we achieve ON/OFF ratios up to ≈300 and a channel pinch-off leading to drain current saturation.

View Article and Find Full Text PDF

The formation of brown protective skin in onion bulbs can be induced by rapid post-harvest heat treatment. Onions that are peeled to different depths and are exposed to heat stress show that only the outer scales form the dry brown skin, whereas the inner scales maintain high water content and do not change color. Our study demonstrates that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside.

View Article and Find Full Text PDF

Metal-halide perovskites have emerged as promising materials for optoelectronics applications, such as photovoltaics, light-emitting diodes, and photodetectors due to their excellent photoconversion efficiencies. However, their instability in aqueous solutions and most organic solvents has complicated their micropatterning procedures, which are needed for dense device integration, for example, in displays or cameras. In this work, a lift-off process based on poly(methyl methacrylate) and deep ultraviolet lithography on flexible plastic foils is presented.

View Article and Find Full Text PDF

We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT.

View Article and Find Full Text PDF

Long-term storage and transport of post-harvest carrots (Daucus carota L.) require a low-temperature, high-relative-humidity environment, usually with low ventilation. Following long-term storage, a slimy exudate (oozing) often appears on the carrots, leading to severe spoilage.

View Article and Find Full Text PDF

Although recent progress in the field of flexible electronics has allowed the realization of biocompatible and conformable electronics, systematic approaches which combine high bendability (<3 mm bending radius), high stretchability (>3-4%), and low complexity in the fabrication process are still missing. Here, we show a technique to induce randomly oriented and customized wrinkles on the surface of a biocompatible elastomeric substrate, where Thin-Film Transistors (TFTs) and circuits (inverter and logic NAND gates) based on amorphous-IGZO are fabricated. By tuning the wavelength and the amplitude of the wrinkles, the devices are fully operational while bent to 13 μm bending radii as well as while stretched up to 5%, keeping unchanged electrical properties.

View Article and Find Full Text PDF

Skin formation of onion ( L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities.

View Article and Find Full Text PDF

Neuronal networks in vitro are considered one of the most promising targets of research to assess potential electromagnetic field induced effects on neuronal functionality. A few exposure studies revealed there is currently no evidence of any adverse health effects caused by weak electromagnetic fields. Nevertheless, some published results are inconsistent.

View Article and Find Full Text PDF

This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.

View Article and Find Full Text PDF

Background: Multi-electrode arrays (MEAs) allow non-invasive multi-unit recording in-vitro from cultured neuronal networks. For sufficient neuronal growth and adhesion on such MEAs, substrate preparation is required. Plating of dissociated neurons on a uniformly prepared MEA's surface results in the formation of spatially extended random networks with substantial inter-sample variability.

View Article and Find Full Text PDF

Although computed tomography (CT) scan radiation dose has drawn much attention, radiation dose from nuclear medicine procedures should not be overlooked. An estimated 19.7 million nuclear medicine procedures are done annually in the United States, with patient radiation dose comparable to that from CT scans.

View Article and Find Full Text PDF