Objective: The performance of a commercially available artificial intelligence (AI)-based software that detects breast arterial calcifications (BACs) on mammograms is presented.
Methods: This retrospective study was exempt from IRB approval and adhered to the HIPAA regulations. Breast arterial calcification detection using AI was assessed in 253 patients who underwent 314 digital mammography (DM) examinations and 143 patients who underwent 277 digital breast tomosynthesis (DBT) examinations between October 2004 and September 2022.
Magnetic reconnection drives multispecies particle acceleration broadly in space and astrophysics. We perform the first 3D hybrid simulations (fluid electrons, kinetic ions) that contain sufficient scale separation to produce nonthermal heavy-ion acceleration, with fragmented flux ropes critical for accelerating all species. We demonstrate the acceleration of all ion species (up to Fe) into power-law spectra with similar indices, by a common Fermi acceleration mechanism.
View Article and Find Full Text PDFThe relaxation of field-line tension during magnetic reconnection gives rise to a universal Fermi acceleration process involving the curvature drift of particles. However, the efficiency of this mechanism is limited by the trapping of energetic particles within flux ropes. Using 3D fully kinetic simulations, we demonstrate that the flux-rope kink instability leads to strong field-line chaos in weak-guide-field regimes where the Fermi mechanism is most efficient, thus allowing particles to transport out of flux ropes and undergo further acceleration.
View Article and Find Full Text PDFAided by fully kinetic simulations, spacecraft observations of magnetic reconnection in Earth's magnetotail are analyzed. The structure of the electron diffusion region is in quantitative agreement with the numerical model. Of special interest, the spacecraft data reveal how reconnection is mediated by off-diagonal stress in the electron pressure tensor breaking the frozen-in law of the electron fluid.
View Article and Find Full Text PDFPhys Rev Lett
January 2019
Fast magnetic reconnection occurs in nearly all natural and laboratory plasmas and rapidly releases stored magnetic energy. Although commonly studied in fully ionized plasmas, if and when fast reconnection can occur in partially ionized plasmas, such as the interstellar medium or solar chromosphere, is not well understood. This Letter presents the first fully kinetic particle-in-cell simulations of partially ionized reconnection and demonstrates that fast reconnection can occur in partially ionized systems.
View Article and Find Full Text PDFMagnetic reconnection is a fundamental process in magnetized plasma where magnetic energy is converted to plasma energy. Despite huge differences in the physical size of the reconnection layer, remarkably similar characteristics are observed in both laboratory and magnetosphere plasmas. Here we present the comparative study of the dynamics and physical mechanisms governing the energy conversion in the laboratory and space plasma in the context of two-fluid physics, aided by numerical simulations.
View Article and Find Full Text PDFFully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ∼6d_{e} electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. The numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth's dayside magnetopause.
View Article and Find Full Text PDFMagnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft.
View Article and Find Full Text PDFAnalysis of the Vlasov-Maxwell equations from the perspective of turbulence cascade clarifies the role of electromagnetic work, and reveals the importance of the pressure-strain relation in generating internal energy. Particle-in-cell simulation demonstrates the relative importance of the several energy exchange terms, indicating that the traceless pressure-strain interaction "Pi-D" is of particular importance for both electrons and protons. The Pi-D interaction and the second tensor invariants of the strain are highly localized in similar spatial regions, indicating that energy transfer occurs preferentially in coherent structures.
View Article and Find Full Text PDFPhys Rev Lett
February 2017
Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale.
View Article and Find Full Text PDFSupported by a kinetic simulation, we derive an exclusion energy parameter E_{X} providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low-density separatrix.
View Article and Find Full Text PDFThe dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data.
View Article and Find Full Text PDFTo explain many natural magnetized plasma phenomena, it is crucial to understand how rates of collisionless magnetic reconnection scale in large magnetohydrodynamic (MHD) scale systems. Simulations of isolated current sheets conclude such rates are independent of system size and can be reproduced by the Hall-MHD model, but neglect sheet formation and coupling to MHD scales. Here, it is shown for the problem of flux-rope merging, which includes this formation and coupling, that the Hall-MHD model fails to reproduce the kinetic results.
View Article and Find Full Text PDFUsing fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line.
View Article and Find Full Text PDFUsing fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles.
View Article and Find Full Text PDFThree-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion region is composed of two or more current sheets in regimes with weak magnetic shear angles ϕ≲80°. This new morphology is explained by oblique tearing modes which produce flux ropes while simultaneously driving enhanced current at multiple resonance surfaces. This physics persists into the nonlinear regime leading to multiple electron layers embedded within a larger Alfvénic inflow and outflow.
View Article and Find Full Text PDFRecent fully nonlinear, kinetic three-dimensional simulations of magnetic reconnection [W. Daughton et al., Nat.
View Article and Find Full Text PDFThe electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers.
View Article and Find Full Text PDFPhys Rev Lett
November 2012
High resolution kinetic simulations of collisionless plasma driven by shear show the development of turbulence characterized by dynamic coherent sheetlike current density structures spanning a range of scales down to electron scales. We present evidence that these structures are sites for heating and dissipation, and that stronger current structures signify higher dissipation rates. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform and patchy.
View Article and Find Full Text PDFCollisionless magnetic reconnection in high-temperature plasmas has been widely studied through fluid-based models. Here, we present results of fluid simulation implementing new equations of state for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron pressure that builds in the reconnection region due to electric and magnetic trapping of electrons.
View Article and Find Full Text PDFSpatially resolved, diagnostic signatures across the X-line and electron-diffusion region (EDR) by the Polar spacecraft are reported at Earth's magnetopause. The X-line traversal has a local electron's skin depth scale. First, resolved EDR profiles are presented with peak electron thermal Mach numbers >1.
View Article and Find Full Text PDFUsing fully kinetic 3D simulations of magnetic reconnection in asymmetric antiparallel configurations, we demonstrate that an electromagnetic lower-hybrid drift instability (LHDI) localized near the X line can substantially modify the reconnection mechanism in the regimes with large asymmetry, a moderate ratio of electron to ion temperature, and low plasma β. However, the mode saturates at a small amplitude in the regimes typical of Earth's magnetopause. In these cases, LHDI-driven turbulence is predominantly localized along the separatrices on the low-β side of the current sheet, in agreement with spacecraft observations.
View Article and Find Full Text PDFWe report the direct detection by three THEMIS spacecraft of a magnetic flux rope flanked by two active X lines producing colliding plasma jets near the center of the flux rope. The observed density depletion and open magnetic field topology inside the flux rope reveal important three-dimensional effects. There was also evidence for nonthermal electron energization within the flux rope core where the fluxes of 1-4 keV superthermal electrons were higher than those in the converging reconnection jets.
View Article and Find Full Text PDF