Publications by authors named "Daufin G"

The objective of this work was to propose a new strategy, based on objective and rational arguments and calculations, that can be implemented by plant designers and operators in the dairy industry to reduce operating time and the volume and load of effluents. The strategy is based on the on-line and off-line use of sensors and tracers, the accuracy, relevance, and robustness of which were evaluated for each phase of the sequence used for cleaning an industrial sterilizer. The efficient duration of each phase of the cleaning sequence (management of the end of operation) and the sorting of the fluids (management of mixtures and destination of fluids) were determined in real time.

View Article and Find Full Text PDF

Milk fat is considered to be the main limiting component of the kinetics of dairy wastewater anaerobic digestion. The objective of this work was to give a better understanding of the nonelucidated anaerobic degradation steps of milk fat. For that purpose, the kinetics of fat degradation was quantified in comparison with other milk components (lactose, proteins), regarding the milk fat polluting load and structure [globular (native state), triglycerides].

View Article and Find Full Text PDF

The selective precipitation of alpha-lactalbumin (alpha-LA) at a pH around its isoelectric point (4.2) under heat treatment is the basis for a fractionation process of whey proteins. In these conditions, beta-lactoglobulin remains soluble, whereas bovine serum albumin and immunoglobulins co-precipitate.

View Article and Find Full Text PDF

A simplified modelling and a simulation of a membrane-coupled anaerobic bioreactor, AMBR were performed to assess the potential of controlled retention of solutes by the membrane, R, on biomass growth and of purified water quality. R was shown to be a major parameter, which enables to uncouple the hydraulic resistance time, HRT from the solute retention time, independent of biomass retention, and has a significant effect on purified water quality. Therefore, from a theoretical point of view, it facilitates reaching high biodegradation in a small volume membrane reactor.

View Article and Find Full Text PDF

A predictive model for the denitrification performance of complex carbon sources was proposed based on compositional data. Potential and rates of denitrification of single dairy components (lactose, lactate, proteins, fat), as well as binary and complex (modelled "process water") mixtures were assessed using test for nitrogen uptake rate (NUR). In all experiments, denitrification potential of mixtures was found to be significantly higher than the sum of individual potentials and denitrification rate with the readily biodegradable moiety of the mixtures was similar to the highest rate obtained with individual components (lactose or lactate).

View Article and Find Full Text PDF

In the dairy industry re-use and multi-use cleaning-in-place (CIP) systems are operated by circulating chemicals and water without taking the equipment apart. The solutions, which become polluted due to the removal of fouling compounds, are drained periodically when they are considered to be too polluted. This work shows the large variations in composition (pollution, surface tension, etc) of the industrial caustic solutions coming from milk standardization and pasteurization plant CIP throughout their life time (7 days) and from 1 week to another.

View Article and Find Full Text PDF

Fractions enriched with alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg) were produced by a process comprising the following successive steps: clarification-defatting of whey protein concentrate, precipitation of alpha-lactalbumin, separation of soluble beta-lactoglobulin, washing the precipitate, solubilization of the precipitate, concentration and purification of alpha-la. The present study evaluated the performance of the process, firstly on a laboratory scale with acid whey and then on a pilot scale with Gouda cheese whey. In both cases soluble beta-lg was separated from the precipitate using diafiltration or microfiltration and the purities of alpha-la and beta-lg were in the range 52-83 and 85-94% respectively.

View Article and Find Full Text PDF

Nanofiltration (NF) membrane technology shows interesting potentials for separating organic components on the basis of solute charge and size in the range of 300-1000 g mol-1. Separation properties of two inorganic NF membranes were studied with a set of 10 small peptides (molecular mass range: 300-900 g mol-1; 3 < pI < 10) contained in a well-characterized tryptic beta casein hydrolysate. Peptides transmission strongly depended on ionic interactions in the system.

View Article and Find Full Text PDF

A charged organic-inorganic nanofiltration (NF) membrane prototype was used to separate a mixture of nine amino acids (AA) on the basis of differential electrostatic interactions with the membrane because, for a given pH, some of them were positively charged, some were negative, and some were zwitterions. Effect of pH, amino acid concentration (C(r)), and added ionic strength ([NaCI]) on the process selectivity was studied. A global statistical study revealed that pH was the dominant parameter regarding fractionation.

View Article and Find Full Text PDF

A filtration rig equipped with a tubular alumina membrane was used to study the performance of crossflow microfiltration of Lactobacillus helveticus. Experiments were performed at constant permeation flux. High cell concentrations and fast transient conditions to the stationary J adversely affected permeability.

View Article and Find Full Text PDF

The selective precipitation of alpha-lactalbumin (alpha-LA) at a pH around its isoelectric point (4.2) under heat treatment is the basis for a fractionation process of whey proteins. As precipitation is a phenomenon dependent on the protein hydrophobicity, and as the release of the tightly bound calcium occurring at pH around 4 modifies the alpha-LA hydrophobicity, the specific role of calcium on isoelectric precipitation is investigated.

View Article and Find Full Text PDF

Peptide separation by selective membrane filtration has numerous potential applications such as production of peptides with biological activities or spectific enrichment in compounds acting as flavoring agents or as growth factors required by the fermentation industry. The retention of peptides arising from tryptic hdroysis of beta-casein using an M5 Carbosep membrane (molecular wieght cutoll = 10,000 D) has been studied. The peptides with known sequences were characterized by their molecular weight, isoelectric point, and hydrophobicity.

View Article and Find Full Text PDF

Cleaning of inorganic membranes after ultrafiltration (UF) of skim milk has been assessed using hydraulic, physicochemical and spectroscopic (i.r. and X-ray photoelectron spectroscopy) measurements.

View Article and Find Full Text PDF

Ultrafiltration of peptide mixtures is studied under various operating conditions (transmembrane pressure, tangential flow-rate) using two ultrafiltration inorganic membranes M5 and M1 with molecular weight cut-offs, MWCO 10 and 70 kD, respectively. It is shown that the separation of peptides is controlled by a dual mechanism: size exclusion and electrostatic repulsion. When the ionic strength is high enough to screen out the electrostatic interactions, experimental data are in good agreement with a sieving model developed to estimate the intrinsic transmission from the molecular weight of a component and from the MWCO of the membranes.

View Article and Find Full Text PDF

Cleaning of an inorganic ultrafiltration membrane has been quantified through hydraulic, physicochemical, and spectroscopic (infrared and x-photoelectron spectroscopy) analyses. An efficient cleaning sequence of nitric acid followed by sodium hypochlorite has been proposed for cleaning of defatted whey protein concentrate and milk ultrafiltration membranes. The influence of reversed sequence and time reduction are discussed together with the action of both cleaning chemicals.

View Article and Find Full Text PDF

Ultrafiltration through Carbosep M(4) mineral membrane of protein solutions of decreasing complexity (whey before and after centrifugation or clarification, beta-lactoglobulin) was studied. Mathematical models were used to explain variations in flux with time. Taking into account variations in protein retention and hydraulic resistance of the membrane during ultrafiltration, proteins and lipoproteins were found to be involved not only in the polarization layer (reversible fouling leading to a difference in the osmotic pressure), but also in irreversible fouling by adsorption.

View Article and Find Full Text PDF