Steroid hormones are indispensable for control of vital processes, development, reproduction and modulation of behavior. Lack or complete dysfunction of glucocorticoid (GC) signaling, in particular, have lethal consequences. Even a minor change in the level of circulating cortisol can be of physiological and clinical significance.
View Article and Find Full Text PDFEur J Obstet Gynecol Reprod Biol
March 2004
Objective: The current study sought for polymorphisms within the progesterone receptor (PR) gene. Allele and genotype frequencies of patients with repeated abortions were compared to a control group.
Design: All exons of the PR of 42 women with repeated abortions and 40 controls were screened for single nucleotide polymorphisms (SNP).
J Steroid Biochem Mol Biol
May 2003
Unlabelled: Plasma membrane (PM) steroid recognition sites are thought to be responsible only for rapid, non-genomic responses without any link to the nuclear receptor-mediated genomic effects of steroids. We focused on a PM "glucocorticoid-importer" (GC-importer) that imports GC into rat liver cells. This site interacts also with particular gestagens (progesterone, P; medroxyprogesterone, MP; ethynodiol, Ethy) and estrogens (ethinylestradiol, EE(2); mestranol), which do not bind to the nuclear GC receptor (GR).
View Article and Find Full Text PDFAbout 24 intrinsic neurosecretory neurons within the pericardial organs (POs) of the crab Carcinus maenas produce a novel crustacean hyperglycaemic hormone (CHH)-like peptide (PO-CHH) and two CHH-precursor-related peptides (PO-CPRP I and II) as identified immunochemically and by peptide chemistry. Edman sequencing and MS revealed PO-CHH as a 73 amino acid peptide (8630 Da) with a free C-terminus. PO-CHH and sinus gland CHH (SG-CHH) share an identical N-terminal sequence, positions 1-40, but the remaining sequence, positions 41-73 or 41-72, differs considerably.
View Article and Find Full Text PDFIn previous papers we provided evidence for a glucocorticoid (GC) responsive site in a highly purified rat liver plasma membrane (PM) fraction, which has proved to be osmotically active, 'right side-out' vesicles, free of CBG, glucocorticoid receptors (GR) and ATP (J. Steroid Biochem. Molec.
View Article and Find Full Text PDFBased on previous in vivo and in situ studies showing that tetracyclines possess antidegenerative effects on cartilage in conjunction with a reduced proteoglycan (PG) loss from the extracellular matrix, we investigated the effects of doxycycline, minocycline and tetracycline on the degradation and biosynthesis of PGs by bovine articular cartilage explants, both in vitro and in situ. Doxycycline, minocycline and tetracycline dose dependently, although weakly, inhibited PG degrading matrix metalloproteinases (MMPs) in vitro, when tested at concentrations ranging from 1 to 100 microM. Ro 31-4724 proved to be a potent inhibitor of MMP proteoglycanases (IC50 value 1.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) belong to the key enzymes of the proteolytic destruction of cartilage matrix during chronic rheumatic diseases. Our work focused on the inhibitory potential of the hydroxamate Ro 31-4724 on the activity of MMP-proteoglycanases as well as on the viability, morphology and proteoglycan metabolism of interleukin-1 (IL-1)-treated bovine articular cartilage explants. The in vitro activity of MMP-proteoglycanases as well as the release of proteoglycans from IL-1-treated cartilage explants were significantly and concentration-dependently inhibited by Ro 31-4724 tested at concentrations ranging from 1 nmol/l to 10 mumol/l.
View Article and Find Full Text PDFThe purpose of this study was to examine whether drugs used in the treatment of arthritic disorders possess any inhibitory potential on the proteoglycanolytic activities of matrix metalloproteinases (MMPs), and to determine whether drugs which inhibit these enzymes also modulate the biosynthesis and release of proteoglycans (PGs) from interleukin-1-(IL-1) treated articular cartilage explants. The cartilage-bone marrow extract and the glycosaminoglycan-peptide complex (DAK-16) dose-dependently inhibited MMP proteoglycanases in vitro when tested at concentrations ranging from 0.5 to 55 mg/mL, displaying an IC50 value of 31.
View Article and Find Full Text PDFMatrix metalloproteinases (MMP) are among the key enzymes responsible for the proteolytic destruction of articular cartilage during chronic rheumatic diseases. Articular cartilage is one potential target for drugs designed to inhibit the activity of MMPs in order to stop or to slow down the proteolytic destruction of the extracellular matrix of cartilage. The purpose of this study was to investigate the effect of the synthetic inhibitor of MMPs U-24522 for its ability (1) to inhibit in vitro the activity of MMP-proteoglycanases; (2) to modulate the morphology and viability of cartilage explants; and (3) to modify the biosynthesis and release of proteoglycans from articular cartilage explants.
View Article and Find Full Text PDF