T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs.
View Article and Find Full Text PDFDespite the improvement in clinical outcome with 13-cis-retinoic acid (13-cisRA) + anti-GD2 antibody + cytokine immunotherapy given in first response ~40% of high-risk neuroblastoma patients die of recurrent disease. MYCN genomic amplification is a biomarker of aggressive tumors in the childhood cancer neuroblastoma. MYCN expression is downregulated by 13-cisRA, a differentiating agent that is a component of neuroblastoma therapy.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is responsible for 7.3% of all cancer deaths. Even though there is a steady increase in patient survival for most cancers over the decades, the patient survival rate for pancreatic cancer remains low with current therapeutic strategies.
View Article and Find Full Text PDFObjective: All-trans-N-(4-hydroxyphenyl)retinamide or fenretinide (4-HPR) acts by reactive oxygen species (ROS) and dihydroceramides (DHCers). In early-phase clinical trials 4-HPR has achieved complete responses in T-cell lymphomas (TCL) and neuroblastoma (NB) and signals of activity in ovarian cancer (OV). We defined the activity of 4-HPR metabolites in N-(4-methoxyphenyl)retinamide (MPR), 4-oxo-N-(4-hydroxyphenyl)retinamide (oxoHPR), and the 4-HPR isomer 13-cis-fenretinide (cis-HPR) in NB, OV, and TCL cell lines cultured in physiological hypoxia.
View Article and Find Full Text PDFBackground: Maintenance therapy with 13-cis-retinoic acid and immunotherapy (given after completion of intensive cytotoxic therapy) improves outcome for high-risk neuroblastoma patients. The synthetic retinoid fenretinide (4-HPR) achieved multiple complete responses in relapse/refractory neuroblastoma in early-phase clinical trials, has low systemic toxicity, and has been considered for maintenance therapy clinical trials. Difluoromethylornithine (DFMO, an irreversible inhibitor of ornithine decarboxylase with minimal single-agent clinical response data) is being used for maintenance therapy of neuroblastoma.
View Article and Find Full Text PDFCeramide synthases (CERS) produce ceramides which are key intermediators in the biosynthesis of complex sphingolipids and play an important role in cell proliferation, differentiation, apoptosis and senescence. CERS6 is an isoform of ceramide synthases known to generate ceramides with C16 acyl chain (C-Cer). CERS6 and C-Cer levels were significantly higher in acute lymphoblastic leukemia (ALL) cells in comparison to peripheral blood mononuclear cells and T lymphocytes derived from healthy human volunteers.
View Article and Find Full Text PDFBackground And Purpose: Isotretinoin (13-cis-retinoic acid; 13-cRA) is a differentiation inducer used to treat minimal residual disease after myeloablative therapy for high-risk neuroblastoma. However, more than 40% of children develop recurrent disease during or after 13-cRA treatment. The plasma concentrations of 13-cRA in earlier studies were considered subtherapeutic while 4-oxo-13-cis-RA (4-oxo-13-cRA), a metabolite of 13-cRA considered by some investigators as inactive, were greater than threefold higher than 13-cRA.
View Article and Find Full Text PDF