Publications by authors named "Dattelbaum A"

Unlabelled: Long-term stabilization of DNA is needed for forensic, clinical, in-field operations and numerous other applications. Although freezing (<-20 °C) and dry storage are currently the preferential methods for long-term storage, a noticeable pre-analytical degradation of DNA over time, upfront capital investment and recurring costs have demonstrated a need for an alternative long-term room-temperature preservation method. Herein, we report a novel, fast (~5 min) silica sol-gel preparation method using a standard microwave-initiated polymerization reaction amenable to stabilization of DNA.

View Article and Find Full Text PDF

Graphitic materials are essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction.

View Article and Find Full Text PDF

Cell membranes perform important biological roles including compartmentalization, signaling, and transport of nutrients. Supported lipid membranes mimic the behavior of cell membranes and are an important model tool for studying membrane properties in a controlled laboratory environment. Lipid membranes may be supported on solid substrates; however, protein and lipid interactions with the substrate typically result in their denaturation.

View Article and Find Full Text PDF

Graphene oxide (GO) has emerged as a multifunctional material that can be synthesized in bulk quantities and can be solution processed to form large-area atomic layered photoactive, flexible thin films for optoelectronic devices. This is largely due to the potential ability to tune electrical and optical properties of GO using functional groups. For the successful application of GO, it is key to understand the evolution of its optoelectronic properties as the GO undergoes a phase transition from its insulating and optically active state to the electrically conducting state with progressive reduction.

View Article and Find Full Text PDF

Graphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes.

View Article and Find Full Text PDF

Phospholipid-based nanomaterials are of interest in several applications including drug delivery, sensing, energy harvesting, and as model systems in basic research. However, a general challenge in creating functional hybrid biomaterials from phospholipid assemblies is their fragility, instability in air, insolubility in water, and the difficulty of integrating them into useful composites that retain or enhance the properties of interest, therefore limiting there use in integrated devices. We document the synthesis and characterization of highly ordered and stable phospholipid-silica thin films that resemble multilamellar architectures present in nature such as the myelin sheath.

View Article and Find Full Text PDF

A general challenge in generating functional materials from nanoscale components is integrating them into useful composites that retain or enhance their properties of interest. Development of single walled carbon nanotube (SWNT) materials for optoelectronics and sensing has been especially challenging in that SWNT optical and electronic properties are highly sensitive to environmental interactions, which can be particularly severe in composite matrices. Percolation of SWNTs into aqueous silica gels shows promise as an important route for exploiting their properties, but retention of the aqueous and surfactant environment still impacts and limits optical response, while also limiting the range of conditions in which these materials may be applied.

View Article and Find Full Text PDF

Adhesion between binders and explosive crystals is of critical importance for the mechanical performance of plastic-bonded explosives (PBXs). The surface properties of several prospective binders have been determined from static advancing contact angle measurements. The surface energies have been used to calculate theoretical work of adhesion to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a common insensitive high explosive.

View Article and Find Full Text PDF

A robust method to immobilize a maltose biosensor is described using an engineered maltose periplasmic binding protein (PBP) covalently coupled to NBDamide, an environmentally sensitive fluorophore. A mesoporous silica sol-gel derived from diglycerylsilane (DGS) was constructed to embed the maltose biosensor, and the ligand reporting fluorescence properties were measured. When sequestered in the DGS-derived silica matrix, the biosensor retained maltose-dependent fluorescence sensing capability with micromolar affinity, which is consistent with the protein free in solution.

View Article and Find Full Text PDF

We present a new approach for the preparation of single walled carbon nanotube silica composite materials that retain the intrinsic fluorescence characteristics of the encapsulated nanotubes. Incorporation of isolated nanotubes into optically transparent matrices, such as sol-gel prepared silica, to take advantage of their near-infrared emission properties for applications like sensing has been a challenging task. In general, the alcohol solvents and acidic conditions required for typical sol-gel preparations disrupt the nanotube/surfactant assembly and cause the isolated nanotubes to aggregate leading to degradation of their fluorescence properties.

View Article and Find Full Text PDF

We report a general procedure to prepare functional organic thin films for biological assays on oxide surfaces. Silica surfaces were functionalized by self-assembly of an amine-terminated silane film using both vapor- and solution-phase deposition of 3'-aminopropylmethyldiethoxysilane (APMDES). We found that vapor-phase deposition of APMDES under reduced pressure produced the highest quality monolayer films with uniform surface coverage, as determined by atomic force microscopy (AFM), ellipsometry, and contact angle measurements.

View Article and Find Full Text PDF

The integration of ion-channel transport functions with responses derived from nanostructured and nanoporous silica mesophase materials is demonstrated. Patterned thin-film mesophases consisting of alternating hydrophilic nanoporous regions and hydrophobic nanostructured regions allow for spatially localized proton transport via selective dimerization of gramicidin in lipid bilayers formed on the hydrophilic regions. The adjoining hydrophobic mesostructure doped with a pH sensitive dye reports the transport.

View Article and Find Full Text PDF

The evolution of photochemical surfactant removal and silica condensation from organically templated thin film silica nanocomposites with mesoscopic ordering has been probed using a combined application of Fourier transform infrared (FT-IR) spectroscopy and single wavelength ellipsometry. Thin films of silica nanocomposites were prepared by a previously reported evaporation-induced self-assembly process. Specifically, oxidized silicon and gold substrates were withdrawn at 25 mm/min from a subcritical micelle concentration solution containing an ethylene oxide surfactant as a structure-directing agent and tetraethyl orthosilicate as a silica precursor.

View Article and Find Full Text PDF

Laser desorption/ionization mass spectrometry (MS) is rapidly growing in popularity as an analytical characterization method in several fields. The technique shot to prominence using matrix-assisted desorption/ionization for large biomolecules (>700 Da), such as proteins, peptides and nucleic acids. However, because the matrix, which consists of small organic molecules, is also ionized, the technique is of limited use in the low-molecular-mass range (<700 Da).

View Article and Find Full Text PDF

We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity.

View Article and Find Full Text PDF

Single bilayer membranes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were formed on ordered nanocomposite and nanoporous silica thin films by fusion of small unilamellar vesicles. The structure of these membranes was investigated using neutron reflectivity. The underlying thin films were formed by evaporation induced self-assembly to obtain periodic arrangements of silica and surfactant molecules in the nanocomposite thin films, followed by photocalcination to oxidatively remove the organics and render the films nanoporous.

View Article and Find Full Text PDF

A series of N-alkyl-N-methylpyrrolidinium bromide salts (C14, C16, or C18) have been explored as templates for the synthesis of ordered, mesoporous silica films; "soft" annealing based on deep-UV calcination is also reported.

View Article and Find Full Text PDF

Poly(2,5-methoxy-propyloxy sulfonate phenylene vinylene)(MPS-PPV) and DAB-Am-16, a generation 3.0 polypropylenimine hexadecamine dendrimer (DAB), are shown to form a tunable photoresponsive polyelectrolyte assembly in aqueous solution with an enhanced emission signal of up to 18-times that of MPS-PPV alone.

View Article and Find Full Text PDF

The solvothermal reaction of CuCl and ZrCl(4) in benzene yields ((bz)CuCl(3))(2)Zr (1) (bz = eta(2)-benzene), which has been characterized by single-crystal X-ray diffraction with a = 6.1206(4) Å, b = 11.1242(4) Å, c = 13.

View Article and Find Full Text PDF