Publications by authors named "Datry T"

Even the most stringent environmental law cannot protect a river if its tributaries remain exposed to pollution and other threats upstream. Excluding a subset of watercourses from legal protection therefore threatens to alter freshwater ecosystems across entire river networks and the services they provide, such as drinking water and flood regulation. Considerable attention has been devoted to defining the scope of environmental laws protecting watercourses.

View Article and Find Full Text PDF

More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds.

View Article and Find Full Text PDF

Climate change is increasing the proportion of river networks experiencing flow intermittence, which in turn reduces local diversity (i.e., α-diversity) but enhances variation in species composition among sites (i.

View Article and Find Full Text PDF

A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems.

View Article and Find Full Text PDF

Rivers are an important component of the global carbon cycle and contribute to atmospheric carbon exchange disproportionately to their total surface area. Largely, this is because rivers efficiently mobilize, transport and metabolize terrigenous organic matter (OM). Notably, our knowledge about the magnitude of globally relevant carbon fluxes strongly contrasts with our lack of understanding of the underlying processes that transform OM.

View Article and Find Full Text PDF

The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created the TREAM dataset, which includes extensive data from 1,816 river and stream sites across Europe, covering a span of over 50 years and involving millions of macroinvertebrate samples.
  • * This dataset will help scientists analyze factors affecting macroinvertebrate populations and evaluate the effectiveness of water quality improvements following European environmental legislation since the 1980s.
View Article and Find Full Text PDF

Floodplain wetlands are critical to the conservation of aquatic biodiversity and the ecological integrity of river networks. However, increasing drought severity and frequency caused by climate change can reduce floodplain wetlands' resistance and recovery capacities. Mollusks, which are common inhabitants of floodplain wetlands, are among the most vulnerable species to drought.

View Article and Find Full Text PDF

Non-perennial river segments - those that recurrently cease to flow or frequently dry - occur in all river networks and are globally more abundant than perennial (always flowing) segments. However, research and management have historically focused on perennial river segments. In this Review, we outline how non-perennial segments are integral parts of river networks.

View Article and Find Full Text PDF

Inland waters are among the most threatened biodiversity hotspots. Ponds located in alpine areas are experiencing more rapid and dramatic water temperature increases than any other biome. Despite their prevalence, alpine ponds and their biodiversity responses to climate change have been poorly explored, reflecting their small size and difficult access.

View Article and Find Full Text PDF

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.

View Article and Find Full Text PDF

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients.

View Article and Find Full Text PDF

Unlabelled: Disturbance can strongly influence ecosystems, yet much remains unknown about the relative importance of key processes (selection, drift, and dispersal) in the recovery of ecological communities following disturbance. We combined field surveys with a field experiment to elucidate mechanisms governing the recovery of aquatic macroinvertebrates in habitats of an alluvial floodplain following flood disturbance. We monitored macroinvertebrates in 24 natural parafluvial habitats over 60 days after a major flood, as well as the colonization of 24 newly-built ponds by macroinvertebrates over 45 days in the same floodplain.

View Article and Find Full Text PDF

The hyporheic zone, i.e. the water-saturated sediment beneath and alongside the riverbed, is exposed to multiple stressors.

View Article and Find Full Text PDF

Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species.

View Article and Find Full Text PDF

Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are distributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of socioecological, hydrologic, climatic and physiographic diversity of rivers.

View Article and Find Full Text PDF
Article Synopsis
  • Regional-scale ecological processes, including the movement of materials, energy, and organisms, are essential for sustaining biodiversity and ecosystem function in river systems, but are often ignored in river management.
  • The authors suggest using a meta-system approach to incorporate these ecological processes at various levels (populations, communities, and ecosystems) into existing conservation and restoration efforts.
  • They also call for new management strategies that leverage recent ecological advancements to better protect and restore river ecosystems amidst growing disruptions to river connectivity worldwide.
View Article and Find Full Text PDF

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater.

View Article and Find Full Text PDF
Article Synopsis
  • Globalization has introduced many invasive species globally, making it crucial to understand their invasion processes for effective management.
  • The study proposes an "impact curve" to track the effects of invasive species over time, differing from the previously assumed "invasion curve" which overlooked population abundance.
  • Using long-term data on the New Zealand mud snail, researchers found that its population dynamics followed the impact curve, peaking in impact about two decades after it was first detected, influenced by local environmental conditions.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding the ecological factors that influence macroinvertebrate communities is vital for metacommunity ecology and can enhance river management and restoration efforts, especially in under-researched regions like subtropical China.
  • The study analyzed data from the Yangtze River Delta, categorizing 405 river sites into groups based on levels of human impact and used statistical methods to evaluate how species sorting and dispersal affected community composition.
  • Findings showed that nearly pristine sites were primarily influenced by species sorting, while heavily impacted sites were more affected by dispersal, highlighting the importance of environmental and spatial factors in biodiversity assessments and the need to maintain habitat diversity to boost local species.
View Article and Find Full Text PDF

Intermittent rivers and ephemeral streams (IRES), which cease flow and/or dry at some point, are the most abundant waterways on earth, and are found on every continent. They can support a diverse, and often abundant, terrestrial and semi-aquatic invertebrate (TSAI) fauna, which has been poorly explored due to its position at the fringe between aquatic and terrestrial disciplines. TSAIs can inhabit a variety of habitat types, including the shoreline, the surface of exposed gravel bars, unsaturated gravels, dry riverbeds, riparian zones, and floodplains.

View Article and Find Full Text PDF

The study of environmental DNA (eDNA) released by aquatic organisms in their habitat offers a fast, noninvasive and sensitive approach to monitor their presence. Common eDNA sampling methods such as water filtration and DNA precipitation are time-consuming, require difficult-to-handle equipment and partially integrate eDNA signals. To overcome these limitations, we created the first proof of concept of a passive, 3D-printed and easy-to-use eDNA sampler.

View Article and Find Full Text PDF
Article Synopsis
  • Global freshwater biodiversity is facing a significant decline, and overcoming this issue requires ambitious goals and substantial funding.
  • Research and conservation efforts for freshwater ecosystems are currently underfunded compared to those for land and marine environments.
  • A global consultation has highlighted 15 key priority needs across five research areas to enhance stewardship and strengthen the management and conservation of freshwater biodiversity.
View Article and Find Full Text PDF

Rivers are generally considered critical habitats for biodiversity; however, this often ignores the fact that many rivers may run dry and support terrestrial as well as aquatic fauna. Here, we investigated the ecological value of intermittent rivers for terrestrial vertebrates by installing camera traps along rivers subject to varying dry periods in two contrasting European climatic zones. We then analysed i) species presence and behaviours (as a proxy of ecological functions) on perennial and intermittent streams; ii) environmental (hydrological and geomorphological) and anthropogenic factors affecting the frequency of occurrence and number of species recorded; and iii) the importance of hydrological factors as regards ecological functioning.

View Article and Find Full Text PDF

The current erosion of biodiversity is a major concern that threatens the ecological integrity of ecosystems and the ecosystem services they provide. Due to global change, an increasing proportion of river networks are drying and changes from perennial to non-perennial flow regimes represent dramatic ecological shifts with potentially irreversible alterations of community and ecosystem dynamics. However, there is minimal understanding of how biological communities respond functionally to drying.

View Article and Find Full Text PDF