Publications by authors named "Dasom Jeon"

Inorganic copper (Cu) fungicides and bactericides are widely used to control disease in fruit and vegetable crops and has led to widespread accumulation of the metal in soil beyond regulatory thresholds. We aimed to elucidate the impacts of Cu on soil health within cherry orchard soils in New Zealand, focusing on three biological indicators: earthworm behaviour, soil respiration, and plant growth. We sampled soils from four blocks of different ages within a single orchard, varying in amounts of accumulated soil Cu (7-263 mg kg) but also in Soil Organic Matter (SOM) content (3-10 %).

View Article and Find Full Text PDF

Electrocatalytic activity of multi-valence metal oxides for oxygen evolution reaction (OER) arises from various interactions among the constituent metal elements. Although the high-valence metal ions attract recent attentions due to the interactions with their neighboring 3d transition metal catalytic center, atomic-scale explanations for the catalytic efficiencies are still lacking. Here, by employing density functional theory predictions and experimental verifications, unprecedented electronic isolation of the catalytic 3d center (M) induced by the surrounding high-valence ions such as W is discovered in multivalent oxides MWO (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn).

View Article and Find Full Text PDF

Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO have recently emerged. However, RuO has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions.

View Article and Find Full Text PDF

Near-eye display technology is a rapidly growing field owing to the recent emergence of augmented and mixed reality. Ultrafast response time, high resolution, high luminance, and a dynamic range for outdoor use are all important for non-pixelated, pupil-forming optics. The current mainstream technologies using liquid crystals and organic materials cannot satisfy all these conditions.

View Article and Find Full Text PDF

Forming metal contact with low contact resistance is essential for the development of electronics based on layered van der Waals materials. ReS is a semiconducting transition metal dichalcogenide (TMD) with an MX structure similar to that of MoS. While most TMDs grow parallel to the substrate when synthesized using chemical vapor deposition (CVD), ReS tends to orient itself vertically during growth.

View Article and Find Full Text PDF

Although development and utilization of efficient catalysts with earth-abundant and cheap elements are desired, precious noble metal-based catalysts are still widely used and studied due to the urgent need to address energy and environmental issues. Polyoxometalates (POMs) can be excellent candidates in this context. In this study, we found that oxo-bridged tetraruthenium polyoxometalate (RuPOM) exhibits excellent electrocatalytic activity for both oxygen evolution and reduction reactions (OER and ORR) with minimal use of noble metal elements and can be used for the development of efficient seawater batteries (SWBs).

View Article and Find Full Text PDF

The main factors involved in the pathogenesis of atopic dermatitis (AD) are skin barrier abnormality, allergy/immunology, and pruritus. Considering how oxidative stress influences these factors, antioxidant agents may be effective candidates in the treatment of AD. To evaluate the effect of Caffeoyl-Pro-His amide (CA-PH), an antioxidant agent, on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like phenotypes in BALB/c mice.

View Article and Find Full Text PDF

The efficient removal of gas bubbles in (photo)electrochemical gas evolution reactions is an important but underexplored issue. Conventionally, researchers have attempted to impart bubble-repellent properties (so-called superaerophobicity) to electrodes by controlling their microstructures. However, conventional approaches have limitations, as they are material specific, difficult to scale up, possibly detrimental to the electrodes' catalytic activity and stability, and incompatible with photoelectrochemical applications.

View Article and Find Full Text PDF

The functionalization of graphene has been extensively used as an effective route for modulating the surface property of graphene, and enhancing the dispersion stability of graphene in aqueous solutions via functionalization has been widely investigated to expand its use for various applications across a range of fields. Herein, an effective approach is described for enhancing the dispersibility of graphene in aqueous solutions at different pH levels via non-covalent zwitterion functionalization. The results show that a surfactant with electron-deficient carbon atoms in its backbone structure and large π-π interactive area enables strong interactions with graphene, and the zwitterionic side terminal groups of the molecule support the dispersibility of graphene in various pH conditions.

View Article and Find Full Text PDF

Rhenium disulfide (ReS) is a transition metal dichalcogenide with a layer-independent direct bandgap. Notably, the weak interlayer coupling owing to its T-phase structure enables multi-layer ReS to behave similarly to decoupled monolayers. This inherent characteristic makes continuous multilayer ReS film a unique platform for large-area electronic applications.

View Article and Find Full Text PDF

Resistive memristors are considered to be key components in the hardware implementation of complex neuromorphic networks because of their simplicity, compactness, and manageable power dissipation. However, breakthroughs with respect to both the selector material technology and the bit-cost-effective three-dimensional (3D) device architecture are necessary to provide sufficient device density while maintaining the advantages of a two-terminal device. Despite substantial progress in the scaling of the memristor devices, the scaling potential of the selector materials remains unclear.

View Article and Find Full Text PDF

Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against -induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of and -induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes.

View Article and Find Full Text PDF

Based on the detailed three-dimensional (3D) finite element (FE) limit analyses, the present study investigates the plastic limit loads of complex-cracked pipes with two-layered materials for determining maximum load-carrying capacity or critical crack length of pipes with two-layered materials. The complex cracks in pipes with two-layered materials consist of a partial through-wall crack and 360-deg circumferential surface crack in the inner side of pipe in the same plane in pipe, which could be developed in the preemptive weld overlay region on the dissimilar metal weld (DMW) of nuclear pipe. In terms of FE limit analyses for complex-cracked pipes with two-layered materials, total thickness of pipe, depth of 360-deg internal surface crack, length of partial through-wall crack and the effect of strength mismatch between two materials are systematically considered in the present study.

View Article and Find Full Text PDF

We studied the kinetics of photoelectrochemical (PEC) water oxidation using a model photoanode BiVO modified with various water oxidation catalysts (WOCs) by electrochemical impedance spectroscopy. In particular, we prepared BiVO photoanodes with catalytic multilayers (CMs), where cationic polyelectrolytes and anionic polyoxometalate (POM) WOCs were assembled in a desired amount at a nanoscale precision, and compared their performance with those with well-known WOCs such as cobalt phosphate (CoPi) and NiOOH. Our comparative kinetics analysis suggested that the deposition of the CMs improved the kinetics of both the photogenerated charge carrier separation/transport in bulk BiVO due to passivation of surface recombination centers and water oxidation at the electrode/electrolyte interface due to deposition of efficient molecular WOCs.

View Article and Find Full Text PDF

An efficient water oxidation photoanode based on hematite has been designed and fabricated by tailored assembly of graphene oxide (GO) nanosheets and cobalt polyoxometalate (Co-POM) water oxidation catalysts into a nacre-like multilayer architecture on a hematite photoanode. The deposition of catalytic multilayers provides a high photocatalytic efficiency and photoelectrochemical stability to underlying hematite photoanodes. Compared to the bare counterpart, the catalytic multilayer electrode exhibits a significantly higher photocurrent density and large cathodic shift in onset potential (∼369 mV) even at neutral pH conditions due to the improved charge transport and catalytic efficiency from the rational and precise assembly of GO and Co-POM.

View Article and Find Full Text PDF

We report the development of semiconducting melanin-based organic/inorganic hybrid photoanodes for solar water oxidation. Synthetic melanin thin-film incorporating polyoxometalate (POM) water oxidation catalysts (WOCs) are readily deposited on the surface of various n-type inorganic semiconductors (e.g.

View Article and Find Full Text PDF

Toll-like receptor 2 (TLR2) responses are involved in various inflammatory immune disorders. Phloretin is a naturally occurring dietary flavonoid that is abundant in fruit. Here, we investigated whether the anti-inflammatory activity of phloretin is mediated through TLR2 pathways, and whether phloretin acts as an inhibitor of TLR2/1 heterodimerization using the TLR2/1 agonist Pam₃CSK₄.

View Article and Find Full Text PDF

CXCL14 is a CXC chemokine family that exhibits antimicrobial activity and contains an amphipathic cationic α-helical region in the C-terminus, a characteristic structure of antimicrobial peptides (AMPs). In this study, we designed three analogs of CXCL14 (named CXCL14-C17) corresponding to the C-terminal α-helix of CXCL14, which displayed potential antimicrobial activity against a wide variety of gram-negative and gram-positive bacteria with minimum inhibitory concentrations of 4-16 μM without mammalian cell toxicity. Furthermore, two CXCL14-C17 analogs (CXCL14-C17-a1 and CXCL14-C17-a3) with improved cell selectivity were engineered by introducing Lys, Arg, or Trp in CXCL14-C17.

View Article and Find Full Text PDF

Water splitting is considered the most attractive pursuit in the field of solar energy conversion. In this study, we report the synthesis and application of a supramolecular hybrid of carbon nanodot (CD) and cobalt polyoxometalate (Co-POM) to solar water oxidation. The self-assembly of the alginate-based CD and Co-POM led to the formation of a spherical hybrid of CD/Co-POM.

View Article and Find Full Text PDF

An efficient and stable heterojunction photoanode for solar water oxidation was fabricated by hybridization of WO and conducting polymers (CPs). Organic/inorganic hybrid photoanodes were readily prepared by the electropolymerization of various CPs and the codeposition of tetraruthenium polyoxometalate (RuPOM) water-oxidation catalysts (WOCs) on the surface of WO. The deposition of CPs, especially polypyrrole (PPy) doped with RuPOM (PPy:RuPOM), resulted in a remarkably improved photoelectrochemical performance by the formation of a WO/PPy p-n heterojunction and the incorporation of efficient RuPOM WOCs.

View Article and Find Full Text PDF

Papiliocin, isolated from the swallowtail butterfly (), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity.

View Article and Find Full Text PDF

Artificial photosynthesis is considered one of the most promising solutions to modern energy and environmental crises. Considering that it is enabled by multiple components through a series of photoelectrochemical processes, the key to successful development of a photosynthetic device depends not only on the development of novel individual components but also on the rational design of an integrated photosynthetic device assembled from them. However, most studies have been dedicated to the development of individual components due to the lack of a general and simple method for the construction of the integrated device.

View Article and Find Full Text PDF

Pseudin-2 (Ps), isolated from the frog Pseudis paradoxa, exhibits potent antibacterial activity and cytotoxicity. To develop antimicrobial peptides with anti-inflammatory activity and low cytotoxicity, we designed Ps analogues with Lys substitutions, resulting in elevated amphipathic α-helical structure and cationicity. We further substituted Gly with Pro (Ps-P analogues) to increase bacterial cell selectivity.

View Article and Find Full Text PDF

An increase in the prevalence of the drug-resistant necessitates developing new types of anti-tuberculosis drugs. Here, we found that phloretin, a naturally-occurring flavonoid, has anti-mycobacterial effects on H37Rv, multi-drug-, and extensively drug-resistant clinical isolates, with minimum inhibitory concentrations of 182 and 364 μM, respectively. Since cause lung inflammation that contributes to tuberculosis pathogenesis, anti-inflammatory effects of phloretin in interferon-γ-stimulated MRC-5 human lung fibroblasts and lipopolysaccharide (LPS)-stimulated dendritic cells were investigated.

View Article and Find Full Text PDF

To discover potent antibiotics against the Gram-negative bacteria, we performed a structure-activity relationship (SAR) study of YKsa-6, which was the most potent inhibitor of Staphylococcus aureus β-ketoacyl acyl carrier protein III in our previous study. We identified and selected 11 candidates, and finally screened two active compounds, YKab-4 (4-[(3-chloro-4-methylphenyl)aminoiminomethyl]benzene-1,3-diol) and YKab-6 (4-[[3-(trifluoromethyl)phenyl]aminoiminomethyl]phenol) as inhibitors of Acinetobacter baumannii KAS III (abKAS III). They showed potent antimicrobial activities at 2 or 8 μg/mL, specifically against Acinetobacter baumannii and a strong binding affinity for abKAS III.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjv5kv0tp47b329cek1tc44l6dfh6lvmp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once