Metabolic dysfunction-associated steatohepatitis (MASH) confers a risk for cardiovascular diseases in patients. Animal models may help exploring the mechanisms linking liver and heart diseases. Hence, we explored the cardiac phenotype in two MASH mouse models: foz/foz mice fed a high-fat diet (HFD) for 24 or 60 weeks and C57BL/6J mice fed a high-fat-, high-cholesterol-, and high-fructose diet for 60 weeks.
View Article and Find Full Text PDFAlzheimer's disease (AD), breast cancer (BC) and prostate cancer (PC) continue to be high in the research and innovation agenda of the European Commission (EC). This is due to their exceptionally large burden to the national health systems, the profound economic effects of opportunity costs attributable to decreased working ability, premature mortality and the ever-increasing demand for both hospital and home-based medical care. Over the last two decades, the EC has been steadily increasing both the number of proposals being funded and the amounts of financial resources being allocated to these fields of research.
View Article and Find Full Text PDFBiomedical research on Alzheimer's disease (AD), breast cancer (BC) and prostate cancer (PC) has globally improved our understanding of the etiopathological mechanisms underlying the onset of these diseases, often with the goal to identify associated genetic and environmental risk factors and develop new medicines. However, the prevalence of these diseases and failure rate in drug development remain high. Being able to retrospectively monitor the major scientific breakthroughs and impact of such investment endeavors is important to re-address funding strategies if and when needed.
View Article and Find Full Text PDFBackground: Personalised medicine is a medical model that aims to provide tailor-made prevention and treatment strategies for defined groups of individuals. The concept brings new challenges to the translational step, both in clinical relevance and validity of models. We have developed a set of recommendations aimed at improving the robustness of preclinical methods in translational research for personalised medicine.
View Article and Find Full Text PDFDistant metastases are detrimental for cancer patients, but the increasingly early detection of tumors offers a chance for metastasis prevention. Importantly, cancers do not metastasize randomly: depending on the type of cancer, metastatic progenitor cells have a predilection for well-defined organs. This has been theorized by Stephen Paget, who proposed the "seed-and-soil hypothesis", according to which metastatic colonization occurs only when the needs of a given metastatic progenitor cell (the seed) match with the resources provided by a given organ (the soil).
View Article and Find Full Text PDFAddressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology.
View Article and Find Full Text PDFOn April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project “Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework” aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure.
View Article and Find Full Text PDFWe have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms.
View Article and Find Full Text PDFThe wound healing that follows myocardial infarction is a complex process involving multiple mechanisms, such as inflammation, angiogenesis and fibrosis. In the last two decades, the involvement of WNT signaling has been extensively studied and effects on virtually all aspects of this wound healing have been reported. However, as often is the case in a newly emerging field, inconsistent and sometimes even contradictory findings have been reported.
View Article and Find Full Text PDFEchocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals.
View Article and Find Full Text PDFMyocardial infarction remains a major health-related problem with significant acute and long-term consequences. Acute coronary occlusion results in marked electrophysiologic alterations that can induce ventricular tachyarrhythmias such as ventricular tachycardia or ventricular fibrillation, often heralding sudden cardiac death. During the infarct-healing stage, hemodynamic and structural changes can lead to left ventricular dilatation and dysfunction, whereas the accompanying fibrosis forms the substrate for re-entrant circuits that can sustain ventricular tachyarrhythmias.
View Article and Find Full Text PDFAn inadequate wound healing following myocardial infarction (MI) is one of the main etiologies of heart failure (HF) development. Interventions aiming at improving this process may contribute to preserving cardiac function after MI. Our group, as well as others, have demonstrated the crucial role of Wnt/frizzled signaling in post-MI remodeling.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) has been shown to inhibit cardiac hypertrophy. Here, we show that submaximal AMPK activation blocks cardiomyocyte hypertrophy without affecting downstream targets previously suggested to be involved, such as p70 ribosomal S6 protein kinase, calcineurin/nuclear factor of activated T cells (NFAT) and extracellular signal-regulated kinases. Instead, cardiomyocyte hypertrophy is accompanied by increased protein O-GlcNAcylation, which is reversed by AMPK activation.
View Article and Find Full Text PDFWNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels.
View Article and Find Full Text PDFDespite early revascularization, remodeling and dysfunction of the left ventricle (LV) after acute myocardial infarction (AMI) remain important therapeutic targets. Intermittent pacing therapy (IPT) of the LV can limit infarct size, when applied during early reperfusion. However, the effects of IPT on post-AMI LV remodeling and infarct healing are unknown.
View Article and Find Full Text PDFExperimental studies indicate improved ventricular function after treatment with growth hormone (GH) post-myocardial infarction, but its effect on arrhythmogenesis is unknown. Here, we assessed the medium-term electrophysiologic remodeling after intra-myocardial GH administration in (n = 33) rats. GH was released from an alginate scaffold, injected around the ischemic myocardium after coronary ligation.
View Article and Find Full Text PDFHyperglycemia (HG) stimulates the production of reactive oxygen species in the heart through activation of NADPH oxidase 2 (NOX2). This production is independent of glucose metabolism but requires sodium/glucose cotransporters (SGLT). Seven SGLT isoforms (SGLT1 to 6 and sodium-myoinositol cotransporter-1, SMIT1) are known, although their expression and function in the heart remain elusive.
View Article and Find Full Text PDFThis chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e.
View Article and Find Full Text PDFThe study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development.
View Article and Find Full Text PDFFibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus.
View Article and Find Full Text PDFSympathetic activation during acute myocardial infarction (MI) is an important arrhythmogenic mechanism, but the role of central autonomic inputs and their modulating factors remain unclear. Using the in vivo rat-model, we examined the effects of clonidine, a centrally acting sympatholytic agent, in the presence or absence of myocardial endothelin-B (ETB) receptors. We studied wild-type (n = 20) and ETB-deficient rats (n = 20) after permanent coronary ligation, with or without pretreatment with clonidine.
View Article and Find Full Text PDFModulation of Wnt/Frizzled signaling with UM206 reduced infarct expansion and prevented heart failure development in mice, an effect that was accompanied by increased myofibroblast presence in the infarct, suggesting that Wnt/Frizzled signaling has a key role in cardiac remodeling following myocardial infarction (MI). This study investigated the effects of modulation of Wnt/Frizzled signaling with UM206 in a swine model of reperfused MI. For this purpose, seven swine with MI were treated with continuous infusion of UM206 for 5 weeks.
View Article and Find Full Text PDFDopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver.
View Article and Find Full Text PDF