Publications by authors named "Dashnamoorthy Ravi"

: Warburg's metabolic paradox illustrates that malignant cells require both glucose and oxygen to survive, even after converting glucose into lactate. It remains unclear whether sparing glucose from oxidation intersects with TCA cycle continuity and if this confers any metabolic advantage in proliferating cancers. This study seeks to understand the mechanistic basis of Warburg's paradox and its overall implications for lymphomagenesis.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to respiratory decline caused by scarring and thickening of lung tissues. Multiple pathways contribute to the fibrotic process in this disease, such as inflammation, epithelial-to-mesenchymal transition, and oxidative stress. The Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway is a key regulator of profibrotic signaling, as it affects the organization of actin-myosin and the remodeling of the extracellular matrix.

View Article and Find Full Text PDF

For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches.

View Article and Find Full Text PDF

Biological paths of tumor progression are difficult to predict without time-series data. Using median shift and abacus transformation in the analysis of RNA sequencing data sets, natural patient stratifications were found based on their transcriptomic burden (TcB). Using gene-behavior analysis, TcB groups were evaluated further to discover biological courses of tumor progression.

View Article and Find Full Text PDF

Background: Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL.

View Article and Find Full Text PDF

Metabolic dysfunctions enabling increased nucleotide biosynthesis are necessary for supporting malignant proliferation. Our investigations indicate that upregulation of fatty acid synthase (FASN) and lipogenesis, commonly observed in many cancers, are associated with nucleotide metabolic dysfunction in lymphoma. The results from our experiments showed that ribonucleotide and deoxyribonucleotide pool depletion, suppression of global RNA/DNA synthesis, and cell cycle inhibition occurred in the presence of FASN inhibition.

View Article and Find Full Text PDF

In this perspective, we propose to leverage reactive oxygen species (ROS) induction as a potential therapeutic measure against viral infections. Our rationale for targeting RNA viral infections by pro-oxidants is routed on the mechanistic hypothesis that ROS based treatment paradigm could impair RNA integrity faster than the other macromolecules. Though antiviral drugs with antioxidant properties confer potential abilities for preventing viral entry, those with pro-oxidant properties could induce the degradation of nascent viral RNA within the host cells, as RNAs are highly prone to ROS mediated degradation than DNA/proteins.

View Article and Find Full Text PDF

We investigated the cytolytic and mechanistic activity of anti-CD19 chimeric antigen receptor natural killer (CD19.CAR.NK92) therapy in lymphoma cell lines (diffuse large B-cell, follicular, and Burkitt lymphoma), including rituximab- and obinutuzumab-resistant cells, patient-derived cells, and a human xenograft model.

View Article and Find Full Text PDF

There remains a need to identify new sensitive diagnostic and predictive blood-based platforms in lymphoma. We previously discovered a novel circulating microRNA (miRNA) signature in a Smurf2-deficient mouse model that spontaneously develops diffuse large B-cell lymphoma (DLBCL). Herein, we investigated this 10-miRNA signature (miR-15a, let-7c, let-7b, miR-27a, miR-10b, miR-18a, miR-497, miR-130a, miR24, and miR-155) in human lymphoma cell lines, mice engrafted with patient-derived xenografts (PDXs), and DLBCL patient serum samples leveraging systems biology analyses and droplet digital PCR (ddPCR) technology.

View Article and Find Full Text PDF

Ixazomib activity and transcriptomic analyses previously established in T cell (TCL) and Hodgkin (HL) lymphoma models predicted synergistic activity for histone deacetylase (HDAC) inhibitory combination. In this present study, we determined the mechanistic basis for ixazomib combination with the HDAC inhibitor, belinostat, in HL and TCL cells lines (ixazomib-sensitive/resistant clones) and primary tumour cells. In ixazomib-treated TCL and HL cells, transient inhibition followed by full recovery of proteasomal activity observed was accompanied by induction of proteasomal gene expression with NFE2L2 (also termed NRF2) as a prominent upstream regulator.

View Article and Find Full Text PDF
Article Synopsis
  • Signaling via immune checkpoint receptors may contribute to T-cell exhaustion and help tumors, like diffuse large B-cell lymphoma (DLBCL), evade the immune system; however, the significance of these markers in DLBCL remains unclear.
  • In a study of 123 DLBCL patients, TIM-3 and PD-L1 were found on tumor cells in 39% and 15% of cases, respectively, while PD-1 and LAG-3 were expressed less frequently, but more on tumor infiltrating lymphocytes (TILs).
  • Patients with high TIM-3 expression had significantly poorer 4-year progression-free survival (23%) and overall survival (30%) compared to those with low/negative TIM-3
View Article and Find Full Text PDF

Diffuse large B cell lymphoma (DLBCL), the most common subtype of Non-Hodgkin lymphoma, exhibits pathologic heterogeneity and a dynamic immunogenic tumor microenvironment (TME). However, the lack of preclinical in vitro models of DLBCL TME hinders optimal therapeutic screening. This study describes the development of an integrated droplet microfluidics-based platform for high-throughput generation of immunogenic DLBCL spheroids.

View Article and Find Full Text PDF

T-cell lymphoma (TCL) is an uncommon and aggressive form of human cancer. Lymphoma is the most common hematopoietic tumor in canines (companion animals), with TCL representing approximately 30% of diagnoses. Collectively, the canine is an appealing model for cancer research given the spontaneous occurrence of cancer, intact immune system, and phytogenetic proximity to humans.

View Article and Find Full Text PDF

Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL).

View Article and Find Full Text PDF

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance.

View Article and Find Full Text PDF

Proteasome-regulated NF-κB has been shown to be important for cell survival in T-cell lymphoma and Hodgkin lymphoma models. Several new small-molecule proteasome inhibitors are under various stages of active preclinical and clinical development. We completed a comprehensive preclinical examination of the efficacy and associated biologic effects of a second-generation proteasome inhibitor, ixazomib, in T-cell lymphoma and Hodgkin lymphoma cells and in vivo SCID mouse models.

View Article and Find Full Text PDF

Purpose: Darinaparsin (Zio-101) is a novel organic arsenical compound with encouraging clinical activity in relapsed/refractory T-cell lymphoma (TCL) and Hodgkin lymphoma (HL); however, little is known about its mechanism of action.

Experimental Design: TCL cell lines (Jurkat, Hut78, and HH) and HL cell lines (L428, L540, and L1236) were examined for in vitro cell death by MTT assay and Annexin V-based flow cytometry. Jurkat and L540-derived xenografts in SCID mice were examined for in vivo tumor inhibition and survival.

View Article and Find Full Text PDF

Background: One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential.

View Article and Find Full Text PDF

Exposure to DNA-damaging agents invokes biological responses necessary for damage recovery and cell survival. Despite the presence of intact DNA repair pathways, lack of certain other biological pathways has been shown to sensitize cells to DNA-damaging agents' exposure. It is likely that following DNA damage a complex interplay between DNA repair pathways and other biological pathways might be required to ensure cell survival.

View Article and Find Full Text PDF

Background: In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O₂ levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O₂ may be undesirable. To understand better the impact of O₂ on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O₂.

View Article and Find Full Text PDF

Background: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data.

View Article and Find Full Text PDF

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking.

View Article and Find Full Text PDF

Genome-wide RNA interference (RNAi) screening allows investigation of the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must decide whether to examine genes with the most robust phenotype or the full gradient of genes that cause an effect and how to identify candidate genes.

View Article and Find Full Text PDF

Mammalian ultraviolet (UV) radiation response is a gene induction cascade activated by several transcription factors, including NF-kappaB. Although NF-kappaB is induced by UV radiation, the signal transduction mechanism remains relatively unclear. In the present study, we show that UV-induced NF-kappaB activation is mediated by the activation of Ataxia telangiecia mutated (ATM) and protein kinase C (PKC).

View Article and Find Full Text PDF