Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation.
View Article and Find Full Text PDFDysregulated central-energy metabolism is a hallmark of brain aging. Supplying enough energy for neurotransmission relies on the neuron-astrocyte metabolic network. To identify genes contributing to age-associated brain functional decline, we formulated an approach to analyze the metabolic network by integrating flux, network structure and transcriptomic databases of neurotransmission and aging.
View Article and Find Full Text PDFMammals have a limited regenerative capacity, especially of the central nervous system. Consequently, any traumatic injury or neurodegenerative disease results in irreversible damage. An important approach to finding strategies to promote regeneration in mammals has been the study of regenerative organisms like Xenopus, the axolotl, and teleost fish.
View Article and Find Full Text PDFBackground: In a high-throughput RNA sequencing analysis, comparing the transcriptional response between Xenopus laevis regenerative and non-regenerative stages to spinal cord injury, cornifelin was found among the most highly differentially expressed genes. Cornifelin is mainly expressed in stratified squamous epithelia, but its expression in the spinal cord and other central nervous structures has only been described during early development.
Results: Here, we report cornifelin expression in the spinal cord, retina, and cornea throughout metamorphosis and in the spinal cord after injury.
In Alzheimer's disease (AD), hippocampal hyperactivation is already present at early stages of the disorder, in some cases, even when the individual is still asymptomatic. Neuronal hyperexcitability has been described to occur before the deposition of amyloid beta plaques in mouse models of AD and has been attributed to an imbalance between excitatory and inhibitory activity. In this Editorial Highlight, we discuss the article by Sosulina et al.
View Article and Find Full Text PDFThe transcriptome analysis of injured tadpole and mice suggested that ., a basic-helix-loop-helix transcription factor, was the most promising transcription factor to exert neuroregeneration after spinal cord injury (SCI) in mammals. We generated a pseudotyped retroviral vector with the neurotropic lymphocytic choriomeningitis virus (LCMV) envelope to deliver murine to mice undergoing SCI.
View Article and Find Full Text PDFThe capacity to regenerate the spinal cord after an injury is a coveted trait that only a limited group of nonmammalian organisms can achieve. In , this capacity is only present during larval or tadpole stages, but is absent during postmetamorphic frog stages. This provides an excellent model for comparative studies between a regenerative and a nonregenerative stage to identify the cellular and molecular mechanisms that explain this difference in regenerative potential.
View Article and Find Full Text PDFHere we present a protocol for the husbandry of Xenopus laevis tadpoles and froglets, and procedures to study spinal cord regeneration. This includes methods to induce spinal cord injury (SCI); DNA and morpholino electroporation for genetic studies; in vivo imaging for cell analysis; a swimming test to measure functional recovery; and a convenient model for screening for new compounds that promote neural regeneration. These protocols establish X.
View Article and Find Full Text PDFWhile an injury to the central nervous system (CNS) in humans and mammals is irreversible, amphibians and teleost fish have the capacity to fully regenerate after severe injury to the CNS. Xenopus laevis has a high potential to regenerate the brain and spinal cord during larval stages (47-54), and loses this capacity during metamorphosis. The optic nerve has the capacity to regenerate throughout the frog's lifespan.
View Article and Find Full Text PDFBackground: Xenopus laevis has regenerative and non-regenerative stages. As a tadpole, it is fully capable of functional recovery after a spinal cord injury, while its juvenile form (froglet) loses this capability during metamorphosis. We envision that comparative studies between regenerative and non-regenerative stages in Xenopus could aid in understanding why spinal cord regeneration fails in human beings.
View Article and Find Full Text PDFUnlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative-permissive environment that the mammalian spinal cord appears to be lacking.
View Article and Find Full Text PDFNext generation sequencing technologies may now be applied to the study of transcriptomics. RNA-Seq or RNA sequencing employs high-throughput sequencing of complementary DNA fragments delivering a transcriptional profile. In this chapter, we aim to provide a starting point for Xenopus researchers planning on starting an RNA-Seq transcriptomics study.
View Article and Find Full Text PDFTransposable elements (retrotransposons and DNA transposons) comprise a large proportion of animal genomes, for example 20% in D. melanogaster, 36% in X. tropicalis and 45% in humans.
View Article and Find Full Text PDFBackground: In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood.
Results: Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2(+) cells.
Transposable elements comprise a large proportion of animal genomes. Transposons can have detrimental effects on genome stability but also offer positive roles for genome evolution and gene expression regulation. Proper balance of the positive and deleterious effects of transposons is crucial for cell homeostasis and requires a mechanism that tightly regulates their expression.
View Article and Find Full Text PDFNifurtimox and benznidazole are the only active drugs against Trypanosoma cruzi; however, they have limited efficacy and severe side effects. During primoinfection, T. cruzi infected macrophages mount an antiparasitic response, which the parasite evades through an increase of tumor growth factor beta and PGE(2) activation as well as decreased iNOS activity.
View Article and Find Full Text PDF