A possible engineering of materials with diverse bio- and nano-applications relies on robust self-assembly of oligonucleotides. Bottom-up approach utilizing guanine-rich DNA oligonucleotides can lead to formation of G-wires, nanostructures consisting of continuous stacks of G-quartets. However, G-wire structure and self-assembly process remain poorly understood, although they are crucial for optimizing properties needed for specific applications.
View Article and Find Full Text PDFGCn and GCnCG, where n = (G2AG4AG2), fold into well-defined, dimeric G-quadruplexes with unprecedented folding topologies in the presence of Na+ ions as revealed by nuclear magnetic resonance spectroscopy. Both G-quadruplexes exhibit unique combination of structural elements among which are two G-quartets, A(GGGG)A hexad and GCGC-quartet. Detailed structural characterization uncovered the crucial role of 5'-GC ends in formation of GCn and GCnCG G-quadruplexes.
View Article and Find Full Text PDF