Increased concentrations of kynurenic acid (KYNA) in the prefrontal cortex (PFC) are thought to contribute to the development of cognitive deficits observed in schizophrenia. Although this view is consistent with preclinical studies showing a negative impact of prefrontal KYNA elevation on executive function, the mechanism underlying such a disruption remains unclear. Here, we measured changes in local field potential (LFP) responses to ventral hippocampal stimulation and conducted whole-cell patch-clamp recordings in brain slices to reveal how nanomolar concentrations of KYNA alter synaptic transmission in the PFC of male adult rats.
View Article and Find Full Text PDFThe adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp-BLA inputs in regulating PFC plasticity.
View Article and Find Full Text PDFBackground: Refinement of mature cognitive functions, such as working memory and decision making, typically takes place during adolescence. The acquisition of these functions is linked to the protracted development of the prefrontal cortex (PFC) and dopamine facilitation of glutamatergic transmission. However, the mechanisms that support these changes during adolescence remain elusive.
View Article and Find Full Text PDFObjective: The prefrontal cortex (PFC) receives multiple cortical and subcortical afferents that regulate higher order cognitive functions, many of which emerge late in adolescence. However, it remains unclear how these afferents influence PFC processing, especially in light of the protracted, late adolescent maturation of prefrontal GABAergic function. Here we investigated the role of PFC GABAergic transmission in regulating plasticity elicited from the ventral hippocampus and basolateral amygdala, and how such modulation undergoes functional changes during adolescence in rats.
View Article and Find Full Text PDFBackground: Drug experimentation during adolescence is associated with increased risk of drug addiction relative to any other age group. To further understand the neurobiology underlying such liability, we investigate how early adolescent cocaine experience impacts medial prefrontal cortex (mPFC) network function in adulthood.
Methods: A noncontingent administration paradigm was used to assess the impact of early adolescent cocaine treatment (rats; postnatal days [PD] 35-40) on the overall inhibitory regulation of mPFC activity in adulthood (PD 65-75) by means of histochemical and in vivo electrophysiological measures combined with pharmacologic manipulations.
Determining the normal developmental trajectory of individual GABAergic components in the prefrontal cortex (PFC) during the adolescent transition period is critical because local GABAergic interneurons are thought to play an important role in the functional maturation of cognitive control that occurs in this developmental window. Based on the expression of calcium-binding proteins, three distinctive subtypes of interneurons have been identified in the PFC: parvalbumin (PV)-, calretinin (CR)-, and calbindin (CB)-positive cells. Using biochemical and histochemical measures, we found that the protein level of PV is lowest in juveniles [postnatal days (PD) 25-35] and increases during adolescence (PD 45-55) to levels similar to those observed in adulthood (PD 65-75).
View Article and Find Full Text PDFA developmental disruption of prefrontal cortical inhibitory circuits is thought to contribute to the adolescent onset of cognitive deficits observed in schizophrenia. However, the developmental mechanisms underlying such a disruption remain elusive. The goal of this study is to examine how repeated exposure to the NMDA receptor antagonist dizocilpine maleate (MK-801) during periadolescence [from postnatal day 35 (P35) to P40] impacts the normative development of local prefrontal network response in rats.
View Article and Find Full Text PDFObjective: There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.
View Article and Find Full Text PDFCurrently existing behavioral measures for motor impairments in rodent models with bilateral dopamine depletion have demonstrated to be difficult to assess due to the degree of task complexity. There is clearly a need for a behavioral test that is simplistic in design and does not require the animal to learn a specific task, in particular for mice. Here we adapted the stepping test, originally designed for assessing asymmetric motor deficits in rats (Olsson, M.
View Article and Find Full Text PDF