Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.
View Article and Find Full Text PDFSorghum is an important C4 grass crop grown for grain, forage, sugar, and bioenergy production. While tall, late flowering landraces are commonly grown in Africa, short early flowering varieties were selected in US grain sorghum breeding programs to reduce lodging and to facilitate machine harvesting. Four loci have been identified that affect stem length (Dw1-Dw4).
View Article and Find Full Text PDFRecombinant inbred populations of many plant species exhibit more heterozygosity than expected under the Mendelian model of segregation. This segregation distortion causes the overestimation of recombination frequencies and consequent genetic map expansion. Here we build upon existing genetic models of differential zygotic viability to model a heterozygote fitness term and calculate expected genotypic proportions in recombinant inbred populations propagated by selfing.
View Article and Find Full Text PDFLight signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1) and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6). SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R) genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3) in long days and ∼11 days earlier in short days.
View Article and Find Full Text PDFBackground: Sorghum genotypes used for grain production in temperate regions are photoperiod insensitive and flower early avoiding adverse environments during the reproductive phase. In contrast, energy sorghum hybrids are highly photoperiod sensitive with extended vegetative phases in long days, resulting in enhanced biomass accumulation. SbPRR37 and SbGHD7 contribute to photoperiod sensitivity in sorghum by repressing expression of SbEHD1 and FT-like genes, thereby delaying flowering in long days with minimal influence in short days (PNAS_108:16469-16474, 2011; Plant Genome_in press, 2014).
View Article and Find Full Text PDFBackground: Rapid acquisition of accurate genotyping information is essential for all genetic marker-based studies. For species with relatively small genomes, complete genome resequencing is a feasible approach for genotyping; however, for species with large and highly repetitive genomes, the acquisition of whole genome sequences for the purpose of genotyping is still relatively inefficient and too expensive to be carried out on a high-throughput basis. Sorghum bicolor is a C4 grass with a sequenced genome size of ~730 Mb, of which ~80% is highly repetitive.
View Article and Find Full Text PDFOptimal flowering time is critical to the success of modern agriculture. Sorghum is a short-day tropical species that exhibits substantial photoperiod sensitivity and delayed flowering in long days. Genotypes with reduced photoperiod sensitivity enabled sorghum's utilization as a grain crop in temperate zones worldwide.
View Article and Find Full Text PDFBacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations.
View Article and Find Full Text PDFImproved knowledge of the sorghum transcriptome will enhance basic understanding of how plants respond to stresses and serve as a source of genes of value to agriculture. Toward this goal, Sorghum bicolor L. Moench cDNA libraries were prepared from light- and dark-grown seedlings, drought-stressed plants, Colletotrichum-infected seedlings and plants, ovaries, embryos, and immature panicles.
View Article and Find Full Text PDFGenome wide changes in gene expression were monitored in the drought tolerant C4 cereal Sorghum bicolor, following exposure of seedlings to high salinity (150 mM NaCl), osmotic stress (20% polyethylene glycol) or abscisic acid (125 microM ABA). A sorghum cDNA microarray providing data on 12,982 unique gene clusters was used to examine gene expression in roots and shoots at 3- and 27-h post-treatment. Expression of approximately 2200 genes, including 174 genes with currently unknown functions, of which a subset appear unique to monocots and/or sorghum, was altered in response to dehydration, high salinity or ABA.
View Article and Find Full Text PDFGametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e.
View Article and Find Full Text PDFA "gene-island" sequencing strategy has been developed that expedites the targeted acquisition of orthologous gene sequences from related species for comparative genome analysis. A 152-kb bacterial artificial chromosome (BAC) clone from sorghum (Sorghum bicolor) encoding phytochrome A (PHYA) was fully sequenced, revealing 16 open reading frames with a gene density similar to many regions of the rice (Oryza sativa) genome. The sequences of genes in the orthologous region of the maize (Zea mays) and rice genomes were obtained using the gene-island sequencing method.
View Article and Find Full Text PDF