Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with harvest date and firmness in apple () using genome-wide association studies (GWAS).
View Article and Find Full Text PDFA QTL for resistance to several races of black spot co-located with the known Rrd1 locus in Rosa. A polymorphism in muRdr1A linked to black spot resistance was identified and molecular markers were designed. Black spot, caused by Diplocarpon rosae, is one of the most serious foliar diseases of landscape roses that reduces the marketability and weakens the plants against winter survival.
View Article and Find Full Text PDFBreeding for Fusarium head blight (FHB) resistance in durum wheat is complicated by the quantitative trait expression and narrow genetic diversity of available resources. High-density mapping of the FHB resistance quantitative trait loci (QTL), evaluation of their co-localization with plant height and maturity QTL and the interaction among the identified QTL are the objectives of this study. Two doubled haploid (DH) populations, one developed from crosses between Triticum turgidum ssp.
View Article and Find Full Text PDFThe apple ( × Borkh.) is an economically and culturally important crop grown worldwide. Growers of this long-lived perennial must produce fruit of adequate quality while also combatting abiotic and biotic stress.
View Article and Find Full Text PDFLoose smut, caused by Ustilago tritici (Pers.) Rostr., is a systemic disease of tetraploid durum wheat (Triticum turgidum L.
View Article and Find Full Text PDFKernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004.
View Article and Find Full Text PDFBreeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality.
View Article and Find Full Text PDFThe leaf erectness profile has been used to optimize plant architecture since erect leaves can enhance photosynthesis and dry matter production by greater sunlight capture. Brassinosteroid is a recent class of phytohormones that has been related to a more erect profile. There are no reports in the literature of the genetic variability of leaf angle in doubled haploid durum wheat populations; most studies on leaf angle have focused on the inheritance.
View Article and Find Full Text PDFBackground: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai.
View Article and Find Full Text PDFBrassinosteroids are a newly reported class of plant growth phytohormones found in plants throughout the plant kingdom. Functioning at very low concentrations, they play an essential role in improving biomass yield and stress tolerance. There are no reports in the literature of the genetic variability of responsiveness of brassinosteroids in wheat; most studies on brassinosteroids have focused on the physiological effects of exogenous addition of brassinosteroids.
View Article and Find Full Text PDFReference populations are valuable resources in genetics studies for determining marker order, marker selection, trait mapping, construction of large-insert libraries, cross-referencing marker platforms, and genome sequencing. Reference populations can be propagated indefinitely, they are polymorphic and have normal segregation. Described are two new reference populations who share the same parents of the original wheat reference population Synthetic W7984 (Altar84/ Aegilops tauschii (219) CIGM86.
View Article and Find Full Text PDFA male sterile wheat mutant, Triticum aestivum L. 'Taigu', was found in a wheat field in China in 1972. The male sterility was controlled by a single dominant gene that was referred to as Ms2.
View Article and Find Full Text PDFAs the staple food for 35% of the world's population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17-billion-base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)-based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases.
View Article and Find Full Text PDFAn F1 derived doubled haploid (DH) population of 402 lines from the adapted spring wheat cross Superb (high yielding)/BW278 (low yielding) was developed to identify quantitative trait loci (QTL) associated with yield and yield components. A subset of the population (186 lines) was evaluated in replicated field trials in 2001 and 2002 at six locations in Manitoba and Saskatchewan, Canada. Agronomic parameters, grain yield and yield components including 1,000 grain weight, harvest index, average seed weight spike(-1), seed number spike(-1) and spikes number m(-2) were measured.
View Article and Find Full Text PDFBreeding for preharvest sprouting (PHS) resistance is of great interest in wheat-growing areas where high rainfall occurs during grain ripening and harvest. We have characterized 32 wheat accessions using 33 microsatellite markers flanking PHS quantitative trait loci (QTLs) previously identified on group 3, 4, 5, and 6 chromosomes of hexaploid wheat. A total of 229 alleles, with an average of 6.
View Article and Find Full Text PDFThis study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.
View Article and Find Full Text PDFBread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.
View Article and Find Full Text PDFTriticum turgidum L var. durum is known to be particularly susceptible to infection by Fusarium graminearum, the causal agent for Fusarium head blight (FHB), which results in severe yield losses and grain contaminated with mycotoxins. This research was aimed at identifying FHB resistance in tetraploid wheat and mapping the location of FHB resistance genes.
View Article and Find Full Text PDFStatistical methods established for the genetic analysis of quantitative traits can be applied to gene expression data. Quantitative trait locus (QTL) analysis can associate the expression of genes or groups of genes with particular genomic regions, and thereby identify regions regulating gene expression. A segregating population of 41 doubled haploid (DH) lines from the hard red spring wheat cross RL4452 x 'AC Domain' was used to map expression level polymorphisms.
View Article and Find Full Text PDFFusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor.
View Article and Find Full Text PDFA major fusarium head blight (FHB) resistance gene Fhb1 (syn. Qfhs.ndsu-3BS) was fine mapped on the distal segment of chromosome 3BS of spring wheat (Triticum aestivum L.
View Article and Find Full Text PDFFusarium head blight of wheat is a major deterrent to wheat production world-wide. The genetics of FHB resistance in wheat are becoming clear and there is a good understanding of the genome location of FHB resistance QTL from different sources such as Sumai3, Wuhan, Nyubai and Frontana. All the components needed for assembling complex genotypes through large-scale molecular breeding experiments are now available.
View Article and Find Full Text PDFAnalysis of genetic diversity changes in existing gene pools of cultivated crops is important for understanding the impact of plant breeding on crop genetic diversity and developing effective indicators for genetic diversity of cultivated plants. The objective of this study was to assess genetic diversity changes in 75 Canadian hard red wheat (Triticum aestivum L.) cultivars released from 1845 to 2004 using 31 simple sequence repeats (SSRs) markers.
View Article and Find Full Text PDFFusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is the key to facilitating the introgression of different FHB resistance genes into adapted wheat. The objectives of the present study were to detect and map quantitative trait loci (QTL) associated with FHB resistance genes and characterize the genetic components of the QTL in a doubled-haploid (DH) spring wheat population using both single-locus and two-locus analysis.
View Article and Find Full Text PDF