A general pattern of declining aquatic ecological integrity with increasing urban land use has been well established for a number of watersheds worldwide. A more nuanced characterization of the influence of different urban land uses and the determination of cumulative thresholds will further inform watershed planning and management. To this end, we investigated the utility of two machine learning algorithms (Random Forests (RF) and Boosted Regression Trees (BRT)) to model stream impairment through multimetric macroinvertebrate index known as High Gradient Macroinvertebrate Index (HGMI) in an urbanizing watershed located in north-central New Jersey, United States.
View Article and Find Full Text PDF