Cyanobacterial harmful algal blooms and the toxins they produce are a global water-quality problem. Monitoring and prediction tools are needed to quickly predict cyanotoxin action-level exceedances in recreational and drinking waters used by the public. To address this need, data were collected at eight locations in Ohio, USA, to identify factors significantly related to observed concentrations of microcystins (a freshwater cyanotoxin) that could be used in two types of site-specific regression models.
View Article and Find Full Text PDFCyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns.
View Article and Find Full Text PDFInt J Phytoremediation
July 2014
Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 microM), copper (2 or 78 microM), and silicon (0 or 1.8 mM) either singly or in combination.
View Article and Find Full Text PDFEngineered wetlands can be an integral part of a treatment strategy for remediating arsenic-contaminated wastewater, wherein, As is removed by adsorption to soil particles, chemical transformation, precipitation, or accumulation by plants. The remediation process could be optimized by choosing plant species that take up As throughout the seasonal growing period. This report details experiments that utilize wetland plant species native to Ohio (Carex stricta, Pycnanthemum virginianum, and Spartina pectinata) that exhibit seasonally related maximal growth rates, plus one hyperaccumulating fern (Pteris vittata) that was used to compare arsenic tolerance.
View Article and Find Full Text PDFEvapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.
View Article and Find Full Text PDFWe report here on efforts to show that a combination of native wetland plant species might perform better than a monoculture in wetlands designed for arsenic remediation by supplementing weaknesses. Carex stricta and Spartina pectinata were used in hydroponic experiments. (i) Arsenic uptake was first assessed at two ages via exposure to control or arsenic-laden solutions (0 or 1.
View Article and Find Full Text PDFRemediation of aquifers containing trichloroethylene (TCE) relies primarily on physical extraction of contaminated groundwater and soil. Unfortunately, this is typically expensive and does not always attain the desired treatment goals. In situ bioremediation via natural attenuation is an alternative treatment process in which TCE is transformed by indigenous microorganisms and plants.
View Article and Find Full Text PDF