Therapeutics at or close to the nanoscale, such as liposomal irinotecan, offer significant promise for the treatment of solid tumors. Their potential advantage over the unencapsulated or free form of the drug is due in part to their altered biodistribution. For slow and sustained release, significant optimization of formulation is needed to achieve the required level of stability and allow long-term storage of the drug product.
View Article and Find Full Text PDFAntibody-directed nanotherapeutics (ADNs) represent a promising delivery platform for selective delivery of an encapsulated drug payload to the site of disease that improves the therapeutic index. Although both single-chain Fv (scFv) and Fab antibody fragments have been used for targeting, no platform approach applicable to any target has emerged. scFv can suffer from intrinsic instability, and the Fabs are challenging to use due to native disulfide over-reduction and resulting impurities at the end of the conjugation process.
View Article and Find Full Text PDFEphrin receptor A2 (EphA2) is a member of the Ephrin/Eph receptor cell-to-cell signaling family of molecules, and it plays a key role in cell proliferation, differentiation, and migration. EphA2 is overexpressed in a broad range of cancers, and its expression is in many cases associated with poor prognosis. We recently developed a novel EphA2-targeting antibody-directed nanotherapeutic encapsulating a labile prodrug of docetaxel (EphA2-ILs-DTXp) for the treatment of EphA2-expressing malignancies.
View Article and Find Full Text PDFTherapeutically targeting receptor tyrosine kinases has proven to be paramount to overcoming chemotherapy resistance in several cancer indications, improving patient outcomes. Insulin-Like Growth Factor Receptor 1 (IGF-1R) and Epidermal Growth Factor Receptor 3 (ErbB3) have been implicated as two such drivers of resistance, however their simultaneous role in ovarian cancer chemotherapy resistance remains poorly elucidated. The aim of this work is to determine the effects of dual IGF-1R/ErbB3 inhibition on ovarian cancer cell signaling, growth, and in vivo efficacy.
View Article and Find Full Text PDFCombinations of chemotherapy with immunotherapy have seen recent clinical success, including two approvals of anti-PD-1/L1 agents in combination with taxane-based chemotherapy in non-small cell lung cancer and triple-negative breast cancer. Here, we present a study on the combination activity and mechanistic rationale of a novel EphA2-targeted liposomal taxane (EphA2-ILs-DTXp) and anti-PD-1. This combination was highly active in mouse syngeneic tumor models, with complete responses observed in 3 of 5 models.
View Article and Find Full Text PDFTumor necrosis factor receptor 2 (TNFR2) is the alternate receptor for TNF and can mediate both pro- and anti-inflammatory activities of T cells. Although TNFR2 has been linked to enhanced suppressive activity of regulatory T cells (T) in autoimmune diseases, the viability of TNFR2 as a target for cancer immunotherapy has been underappreciated. Here, we show that new murine monoclonal anti-TNFR2 antibodies yield robust antitumor activity and durable protective memory in multiple mouse cancer cell line models.
View Article and Find Full Text PDFEphrin A2 targeted immunoliposomes incorporating pH-sensitive taxane prodrugs were developed for sustained delivery of active drug to solid tumors. Here we describe the systematic formulation development and characterization of these immunoliposomes. We synthesized both paclitaxel and docetaxel prodrugs to formulate as ephrin A2-targeted liposomes stabilized in the aqueous core with sucroseoctasulfate (SOS).
View Article and Find Full Text PDFTo guide developers of innovative and generic drug products that contain nanomaterials, the U.S. Food and Drug Administration issued the draft guidance for industry titled: "Drug Products, Including Biological Products, that Contain Nanomaterials" in December 2017.
View Article and Find Full Text PDFAntibody-mediated tumour targeting and nanoparticle-mediated encapsulation can reduce the toxicity of antitumour drugs and improve their efficacy. Here, we describe the performance of a nanotherapeutic encapsulating a hydrolytically sensitive docetaxel prodrug and conjugated to an antibody specific for EphA2-a receptor overexpressed in many tumours. Administration of the nanotherapeutic in mice led to slow and sustained release of the prodrug, reduced exposure of active docetaxel in the circulation (compared with administration of the free drug) and maintenance of optimal exposure of the drug in tumour tissue.
View Article and Find Full Text PDFMM-302 is an anti-HER2 antibody-targeted pegylated liposomal doxorubicin designed to deliver doxorubicin specifically to HER2-expressing solid tumors. The delivery and activity of MM-302 were evaluated in orthotopic, transgenic, and intravenous breast cancer models expressing varying levels of HER2 that metastasize to some of the most common sites of dissemination for breast cancer, namely, lung, liver, and brain. Metastatic burden was quantified by gross evaluation, immunohistochemistry (IHC), and bioluminescent imaging.
View Article and Find Full Text PDFTumor ecosystems are composed of multiple cell types that communicate by ligand-receptor interactions. Targeting ligand-receptor interactions (for instance, with immune checkpoint inhibitors) can provide significant benefits for patients. However, our knowledge of which interactions occur in a tumor and how these interactions affect outcome is still limited.
View Article and Find Full Text PDFCells respond to DNA damage by activating complex signaling networks that decide cell fate, promoting not only DNA damage repair and survival but also cell death. We have developed a multiscale computational model that quantitatively links chemotherapy-induced DNA damage response signaling to cell fate. The computational model was trained and calibrated on extensive data from U2OS osteosarcoma cells, including the cell cycle distribution of the initial cell population, signaling data measured by Western blotting, and cell fate data in response to chemotherapy treatment measured by time-lapse microscopy.
View Article and Find Full Text PDFInsulin-like growth factor receptor 1 (IGF-1R) is critically involved in pancreatic cancer pathophysiology, promoting cancer cell survival and therapeutic resistance. Assessment of IGF-1R inhibitors in combination with standard-of-care chemotherapy, however, failed to demonstrate significant clinical benefit. The aim of this work is to unravel mechanisms of resistance to IGF-1R inhibition in pancreatic cancer and develop novel strategies to improve the activity of standard-of-care therapies.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2018
We present a strategy to discover recombinant monoclonal antibodies (mAbs) to specific cancers and demonstrate this approach using basal subtype breast cancers. A phage antibody library was depleted of antibodies to common cell surface molecules by incubation with luminal breast cancer cell lines, and then selected on a single basal-like breast cancer cell line (MDA-MB-231) for binding associated receptor-mediated endocytosis. Additional profiling against two luminal and four basal-like cell lines revealed 61 unique basal-specific mAbs from a pool of 1440 phage antibodies.
View Article and Find Full Text PDFDespite the advances in imaging, surgery and radiotherapy, the majority of patients with brainstem gliomas die within 2 years after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which prevents total surgical resection and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. The development of new therapeutic approaches which can circumvent the BBB is a potential path to improve outcomes for these children.
View Article and Find Full Text PDFLiposomal irinotecan (irinotecan liposome injection, nal-IRI), a liposomal formulation of irinotecan, is designed for extended circulation relative to irinotecan and for exploiting discontinuous tumor vasculature for enhanced drug delivery to tumors. Following tumor deposition, nal-IRI is taken up by phagocytic cells followed by irinotecan release and conversion to its active metabolite, SN-38. Sustained inhibition of topoisomerase 1 by extended SN-38 exposure as a result of delivery by nal-IRI is hypothesized to enable superior antitumor activity compared with traditional topoisomerase 1 inhibitors such as conventional irinotecan and topotecan.
View Article and Find Full Text PDFPurpose: Preclinical activity of irinotecan has been seen in glioma models, but only modest efficacy has been noted in clinical studies, perhaps related to drug distribution and/or pharmacokinetic limitations. In preclinical testing, irinotecan liposome injection (nal-IRI) results in prolongation of drug exposure and higher tissue levels of drug due to slower metabolism and the effect of enhanced permeability and retention. The objective of the current study was to assess the safety and pharmacokinetics (PK) of nal-IRI and to determine the maximum tolerated dose (MTD) in patients with recurrent high-grade glioma stratified based on UGT1A1 genotyping.
View Article and Find Full Text PDFTo determine whether deposition characteristics of ferumoxytol (FMX) iron nanoparticles in tumors, identified by quantitative MRI, may predict tumor lesion response to nanoliposomal irinotecan (nal-IRI). Eligible patients with previously treated solid tumors had FMX-MRI scans before and following (1, 24, and 72 hours) FMX injection. After MRI acquisition, R2* signal was used to calculate FMX levels in plasma, reference tissue, and tumor lesions by comparison with a phantom-based standard curve.
View Article and Find Full Text PDFAntibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins.
View Article and Find Full Text PDFPurpose: To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI).
Experimental Design: Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing's sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS).
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle.
View Article and Find Full Text PDFA major challenge in the clinical use of cytotoxic chemotherapeutics is maximizing efficacy in tumors while sparing normal tissue. Irinotecan is used for colorectal cancer treatment but the extent of its use is limited by toxic side effects. Liposomal delivery systems offer tools to modify pharmacokinetic and safety profiles of cytotoxic drugs.
View Article and Find Full Text PDFAim: We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model.
Materials & Methods: Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments.
Aim: The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles.
Materials & Methods: An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy.
Background: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients.
View Article and Find Full Text PDF